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Massive transcriptome sequencing through the RNAseq technology has enabled
quantitative transcriptome-wide investigation of co-/post-transcriptional mechanisms
such as alternative splicing and RNA editing. The latter is abundant in human
transcriptomes in which million adenosines are deaminated into inosines by the ADAR
enzymes. RNA editing modulates the innate immune response and its deregulation has
been associated with different human diseases including autoimmune and inflammatory
pathologies, neurodegenerative and psychiatric disorders, and tumors. Accurate
profiling of RNA editing using deep transcriptome data is still a challenge, and the
results depend strongly on processing and alignment steps taken. Accurate calling of
the inosinome repertoire, however, is required to reliably quantify RNA editing and, in
turn, investigate its biological and functional role across multiple samples. Using real
RNAseq data, we demonstrate the impact of different bioinformatics steps on RNA
editing detection and describe the main metrics to quantify its level of activity.

Keywords: RNA editing, transcriptome, RNAseq, deep sequencing, Alu editing index

INTRODUCTION

Eukaryotic organisms exhibit quite complex and dynamic transcriptomes whose regulation is
essential for all cellular processes and for maintaining the homeostatic state (Mele et al., 2015).
The complexity and dynamicity of transcriptomes depends on highly controlled and modulated
post-transcriptional mechanisms such as alternative splicing and RNA modifications (Pan et al.,
2008; Meyer and Jaffrey, 2014; Roundtree et al., 2017). The latter are now emerging as key
players in promoting transcriptome diversity and fine tuning gene expression (Helm and Motorin,
2017; Roundtree et al., 2017). Transient and non-transient RNA modifications belong to the
epitranscriptome world (Schwartz, 2016; Tajaddod et al., 2016; Boccaletto et al., 2018). Non-
transient modifications occurring in a variety of RNA molecules and organisms through base
insertions/deletions or substitutions are referred to as RNA editing changes (Gott and Emeson,
2000). In mammals, the most common RNA editing event involves the deamination of adenosine
(A) into inosine (I), carried out by members of the ADAR family of enzymes acting on double
stranded RNA (dsRNA) (Nishikura, 2016; Eisenberg and Levanon, 2018).

Deep transcriptome sequencing, through the RNAseq technology, has greatly promoted
identification of RNA editing events at genomic scale, revealing the extent of A-to-I editing in
humans, with more than 4.6 million modification sites identified so far. The majority of RNA

Frontiers in Genetics | www.frontiersin.org 1 March 2020 | Volume 11 | Article 194

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00194
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.00194
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00194&domain=pdf&date_stamp=2020-03-06
https://www.frontiersin.org/articles/10.3389/fgene.2020.00194/full
http://loop.frontiersin.org/people/895684/overview
http://loop.frontiersin.org/people/889767/overview
http://loop.frontiersin.org/people/23967/overview
http://loop.frontiersin.org/people/152394/overview
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00194 March 5, 2020 Time: 20:7 # 2

Lo Giudice et al. RNA Editing Quantification

editing modifications (>95%) resides in Alu repetitive elements
that are widespread in human genes (accounting for around
10% of the human genome) (Levanon et al., 2004). Transcripts
harboring two such elements with inverted orientations may
fold to form dsRNA structures targeted by ADARs. In contrast,
only a minute fraction of RNA editing events occurs in protein-
coding genes and can lead to recoding, i.e., non-synonymous
substitutions that generate novel protein isoforms. Recoding
sites are enriched in neural tissues and over-represented in
transcripts encoding proteins linked to the nervous system
function (Rosenthal and Seeburg, 2012).

Accumulating evidence indicates that A-to-I RNA editing in
mammals modulates the innate immune response (Mannion
et al., 2014) and its deregulation has been observed in various
human diseases including autoimmune and inflammatory tissue
injury (Gallo and Locatelli, 2012; Roth et al., 2018; Shallev
et al., 2018; Vlachogiannis et al., 2019), neurodegenerative and
psychiatric disorders (Khermesh et al., 2016; Breen et al., 2019;
Tran et al., 2019), and tumors (Gallo, 2013; Han et al., 2015;
Paz-Yaacov et al., 2015; Silvestris et al., 2019).

An important property of RNA editing is that its levels
vary across different tissues and cell types. Both the edited and
unedited versions of transcripts co-exist in the same tissue or
cell and the ratio between the unedited and edited variants is
regulated by a variety of factors depending on tissue type or
developmental stage. Consequently, quantifying RNA editing,
detecting levels of edited variants or measuring the overall editing
activity, are crucial for investigating its functional involvement
and biological role.

A variety of bioinformatics programs and workflows have
been released to profile RNA editing in deep transcriptome
datasets (Picardi et al., 2015a; Diroma et al., 2019; Lo Giudice
et al., 2020). Although based on different algorithms, all of them
predict RNA editing candidates mitigating biases mainly due to
sequencing errors, mapping errors, and genomic SNPs (Diroma
et al., 2019). Hereafter, we describe a number of important
metrics to quantify RNA editing in RNAseq experiments,
enabling comparative analysis of whole inosinomes across
multiple samples. Using real RNAseq data, we elaborate on
different bioinformatics steps that have an impact on the profiling
of RNA editing. These include pre-processing of raw reads or
the specific strategy for alignment to the genome. As of to date
no single computational methodology guarantees detection of
all real editing events occurring in a sample, and the specific
procedures for RNA editing detection and quantification in a
given RNAseq dataset should be carefully selected, bearing in
mind that the same procedure should be applied to all samples
of a study to allow comparison of the results.

METHODS

RNAseq Samples, Pre-processing, and
Alignment
RNAseq data from four tissues and 10 “body sites” (Table 1
and Supplementary Table S1) were downloaded from
Genotype-Tissue Expression (GTEx) Project through the

dbGAP accession phs000424. Raw data were initially inspected
using FASTQC and reads were trimmed using FASTP. Then,
high quality reads were aligned onto the human genome
(hg19 assembly from UCSC) using STAR v.2.5.2b (Dobin
et al., 2013), providing a list of known gene annotations
from GENCODE (Derrien et al., 2012). In addition, human
cerebellum reads (accession SRR607967) were aligned to
the human genome (hg19 and hg38 primary assemblies)
using BWA v.0.7.17 (Li and Durbin, 2009) and HISAT2
v.2.1.0 (Kim et al., 2015) with known splice sites and
exons from GENCODE.

RNA Editing Detection
A list of de novo RNA editing candidates per sample was
generated using REDItools, following the filtering procedure
described in Picardi et al. (2015b) and Lo Giudice et al. (2020).
Aligned reads from run SRR607967 were also analyzed by
JACUSA (Piechotta et al., 2017) using common basic filters.
Hyper-edited reads were identified using the computational
procedure described by (Porath et al., 2014).

RNA Editing Quantification
The overall RNA editing level per sample was calculated using a
custom python script, taking as input a list of positions inferred
by REDItools. The same program was also used to quantify RNA
editing levels at known positions, downloaded from REDIportal
database (including more than 4.5 million events in humans).
The robustness of the overall editing metric over the number
of RNA editing positions was tested selecting randomly growing
numbers of positions from the REDIportal collection and
calculating the overall editing per each sampling and “body site.”
Then, we measured the Pearson correlation between the overall
editing calculated per each group of positions and the same
metric detected using the whole database collection, by means of
a custom script (pearsonr function from scipy python module).

Recoding index was also calculated using a custom python
script working on REDItools tables. We considered as recoding
sites all 1585 editing positions in REDIportal that are marked
as non-synonymous in all three gene annotations available in
the database (RefSeq, UCSC, and GENCODE). Alu editing index
(AEI) was calculated using the methodology by Roth et al. (2019).

TABLE 1 | Summary table of experiments used.

Tissue Body site N. samples

Artery Aorta 14

Artery Tibial 14

Brain Amygdala 13

Brain Cerebellum 12

Brain Frontal cortex 13

Brain Hippocampus 11

Brain Hypothalamus 14

Brain Spinal cord 10

Lung Lung 9

Muscle Skeletal 13
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Differential RNA Editing
Differential RNA editing at REDIportal recoding sites was
identified using the non-parametric Mann–Whitney (MW)
U-test. Recoding sites were collected per each artery tibial and
cerebellum sample from REDItools tables. The comparison was
carried out by a custom python script taking into account sites
covered by at least 10 RNAseq reads in at least 50% of the samples
per group. p-values were corrected for multiple testing using the
Benjamini–Hochberg method.

Software, command lines, and scripts used in this work are
available at the following GitHub repository https://github.com/
BioinfoUNIBA/QEdit.

RESULTS AND DISCUSSION

Pre-processing and Alignment of
RNAseq Experiments
Profiling RNA editing in whole transcriptome data is yet a
challenging task, due to sequencing errors, read-mapping errors,
genome-encoded polymorphisms (SNPs), somatic mutations,
and spontaneous RNA chemical changes. SNPs and somatic
mutations may be partly filtered out using genomic reads from
matched whole genome sequencing (WGS) or whole exome
sequencing (WXS) experiments, as well as tables of known SNPs

from public databases. Alignment and sequencing errors may be
partly removed using stringent filters of read and base quality. All
of these aforementioned issues require careful design and tuning
of computational pipelines to detect RNA editing candidates,
as each step or procedure or software can affect the yield and
quality of predictions.

Here we demonstrate the effects of pre-processing and genome
alignment steps on RNA editing calling using a single GTEx
RNAseq experiment from human cerebellum (run accession
SRR607967). Raw reads were initially inspected using FASTQC
and their low quality regions were removed by means of FASTP.
Two datasets were generated, the first containing original raw
reads and the second including trimmed reads. Both datasets
were aligned onto the hg19 and hg38 reference chromosomes
of the human genome using three different aligners, BWA
designed for unspliced reads and STAR and HISAT2 optimized
for handling spliced reads. Resulting multi-alignments were
processed with REDItools in order to provide the distribution
of single RNA variants according to a common basic filtering
scheme. Known SNPs from the WGS of the same individual
(run accession SRR2165704) were removed. In all tested cases, we
achieved quite similar distributions, in which A-to-G and T-to-C
changes (putative editing events on the direct or reverse strand)
are over-represented, suggesting enrichment in true RNA editing
events (Figure 1). However, the number of detected sites varied

FIGURE 1 | Distribution of single nucleotide variants detected by REDItools on trimmed and untrimmed reads (from accession SRR607967) aligned by means of
BWA, STAR, and HISAT2 onto hg19 and hg38 human genome assemblies.
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FIGURE 2 | Venn diagrams, showing the AG/TC overlapping positions for BWA, STAR, and HISAT2 aligners. The comparison is made for trimmed and untrimmed
reads mapping onto hg19 and hg38 assemblies, respectively.

depending on the processing steps, suggesting that the trimming
procedure as well as the aligner type affect the detection of RNA
editing. The three different aligners resulted in different results,
reflecting the slightly different algorithms. STAR has returned the
highest number of candidates. Surprisingly, HISAT2 yielded the
lowest number of variants, even though it is splice-aware and
did align the same proportion of reads as STAR (Figure 1 and
Supplementary Table S2).

The genome version used (hg19 and hg38 human genome
assemblies) did not make an appreciable difference (Figure 1),
but the alignment of raw or trimmed reads did have an aligner-
dependent effect (Figure 1). Although deviations in all checked
cases do not appear graphically marked, they do influence the
final list of candidates (Figure 2). We thus see that simple
computational steps or the adoption of specific software can
dramatically change the final results and impact commonly used
metrics for quantification of global or local RNA editing activity
in a sample. Adopting the same computational pipeline to analyze
multiple samples or compare results from already published
works is highly recommended.

RNA Editing Detection
Once trimming and alignment steps have been performed,
the final list of RNA editing candidates strongly depends on
the methodology used to call them. In general, two types of

approaches can be pursued, de novo or “known”. The former
aims to identify all potential RNA editing events of a sample
or the hyper-edited regions only without relying on previously
known sets of editing positions, while the latter focuses on a
restricted number of known changes from literature or well-
established databases.

De novo Approach
Several software packages to detect de novo RNA editing events
in deep transcriptome data have been released to date. They
all suffer from some level of false positives, and each tool
requires fine tuning of a variety of parameters that can strongly
affect the quality of results and, thus, sensitivity and specificity
of predictions (Diroma et al., 2019). The behavior of several
RNA editing detection programs has been recently assessed
(Diroma et al., 2019). Here we analyze comparatively two
de novo approaches for RNA editing identification, REDItools
(Picardi and Pesole, 2013) and JACUSA (Piechotta et al.,
2017), using the same aligned human cerebellum reads. The
two methods require traversing multiple alignments of reads
through a pileup function. REDItools detect events applying
different empirical filters while JACUSA implements a statistical
model for variant calling. Both tools were applied to trimmed
reads aligned onto the hg19 genome by STAR, followed
by common basic filters such as the removal of sites in
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homopolymeric stretches longer than five residues or falling in
the first and last six bases of a read, the exclusion of positions
covered by less than 10 reads and showing a phred quality
score less than 30.

The two programs return a similar number of variants,
but with different precision. REDItools yielded 99,657 putative
editing sites (49.56% of all observed modification sites) while
JACUSA predicted 91,955 putative editing sites (75.23% of all
observed modification sites) (Figure 3). In this specific example,
JACUSA appeared more stringent than REDItools showing a
higher signal-to-noise ratio, likely due to its statistical model and
further filtering step by a companion R script, the JacusaHelper.
This example demonstrates that RNA editing calling tools should
be used with care, paying attention in advance to the various
combinations of parameters and the experimental features of
samples. A good practice is to estimate the false discovery
rate comparing the A-to-G fraction (and T-to-C for unstranded
reads) with the noise due to other base changes not expected
to be edited, and then tune the parameters accordingly. Indeed,
multiple filters can greatly improve the quality of final results.
For example, to mitigate mapping errors (by Blat re-alignment)
and other spurious changes occurring near splice sites or in
genomic regions containing poorly aligned reads we applied
more stringent filters to REDItools (Lo Giudice et al., 2020).
Doing so, the number of variants detected in the same sample
dropped down to only 52,400 sites including about 99% (51,888
positions) of potential RNA editing events (A-to-G and T-to-C
changes) with a very low estimated false discovery rate, <1%.
The effect of the different filtering steps on the distribution of
RNA variants is shown in Figure 4. Importantly, the third step
(coverage cut-off) results in a sizable drop in the number of
excess AG/TC mismatches. While this step is necessary in order
to achieve a good signal-to-noise ratio, one should bear in mind
that the vast majority of the signal is lost during this step.

Note that in other species, e.g., mice, Alu elements are not
present and the number of expected RNA editing candidates
is much lower compared to humans (Neeman et al., 2006;
Ramaswami and Li, 2014). This might require re-tuning the
alignment and calling parameters. Furthermore, in case multiple
samples from biological replicates are available, these may be used
to further improve final results, looking only at putative RNA
editing candidates common to all replicates.

“Known” Approach
The de novo approach generates a list of candidate sites likely to
be edited in the specific RNAseq dataset. Sometimes, however,
it could be useful to focus on a set of known events in
order to better investigate RNA editing dynamics in different
experimental contexts. For example, RNA editing could be
profiled in known recoding events of neurotransmitter receptors
to study its involvement in synaptic function or its deregulation
in neurological/psychiatric disorders or cancer (Gallo, 2013; Han
et al., 2015; Paz-Yaacov et al., 2015; Khermesh et al., 2016;
Silvestris et al., 2019). REDItools package is the most suitable
tool for this task (Picardi and Pesole, 2013). Providing a list of
genomic positions and a pre-aligned file of RNAseq reads, it
recovers the exact site and the corresponding RNA editing level.

The “known” approach has been successfully applied also to large
scale genomic projects. In the specialized database REDIportal
(Picardi et al., 2016), for example, REDItools have been used to
interrogate multiple read alignments from 2660 GTEx RNAseq
experiments employing a large collection of known RNA editing
sites from the ATLAS repository (Picardi et al., 2015b) and
DARNED database (Kiran et al., 2013). Another example is
The Cancer RNA Editome Atlas (TCEA) (Lin and Chen, 2019),
where REDIportal positions (4,656,896) have been explored in
more than 11,000 RNAseq data from the TCGA project (Cancer
Genome Atlas Research Network et al., 2013).

Hyper-Editing
ADAR enzymes are known to have the ability to deaminate
clusters of adjacent adenosines leading to hyper-edited RNA
molecules (Eisenberg, 2016). Many RNA editing calling
programs, however, fail to discover hyper-editing events
because of the high number of mismatches per read that
avoids its correct alignment on the genome (Porath et al.,
2014). Heavily edited reads can be detected through a specific
computational protocol in which not aligned sequences are
rescued and mapped again onto a transformed genome
replacing As with Gs (Porath et al., 2014). Since hyper-editing
occurs mainly in Alu repetitive elements, it could lead to
altered AEI values with a trend to underestimate the RNA
editing activity per sample. As an example, we applied the
computational strategy by Porath et al. (2014) to the above
cerebellum RNAseq experiment (run accession SRR607967)
using 3,490,661 unmapped reads by STAR. The alignment
onto the transformed human genome yielded 19,377 reads
enriched in A-to-G clusters, corresponding to 124,546 RNA
editing changes. Of these, only 3586 were present in the filtered
list of candidates by REDItools. Consequently, more than
120,000 A-to-G RNA editing events, missed by REDItools
in the previous analysis, have been de novo identified in
hyper-edited regions. So, events falling in hyper-edited reads
should not be excluded a priori since they may represent
a considerable fraction of sites. Large scale investigations
based on TCGA samples have proven that the number
of unique editing sites identified in hyper-edited regions
follows the same trend as the AEI index calculated excluding
hyper-edited reads (Paz-Yaacov et al., 2015). These findings
suggest that the expected AEI underestimation does not
significantly affect the global RNA editing activity measured at
Alu level.

Metrics for RNA Editing Quantification
Once RNA editing has been detected in RNAseq samples,
quantification is the next step that allows comparing values
across samples and study of the potential role of RNA editing
in different experimental conditions, such as its involvement
in human disorders. Quantification of RNA editing is also
important to identify molecular markers that could be the
target for engineered ADAR enzymes or modified CRISPR-
Cas systems, according to the recent paradigm of the precision
medicine. Quantification of RNA editing has always been a
challenging task, especially in the last few years in which deep
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FIGURE 3 | Distribution of single nucleotide variants detected by JACUSA vs REDItools on trimmed reads SRR607967 aligned by STAR on hg19 human genome
assembly.

FIGURE 4 | Distributions of RNA variants detected by REDItools obtained following the different filtering steps: (A) all mismatches found following mapping, with a
phred quality score of at least 30; (B) selecting only sites supported by at least 10 WGS reads and removing positions in dbSNP; (C) selecting sites covered by at
least 10 reads and not falling in homopolymeric stretches longer than five residues or in the first and last six bases of a read; (D) selecting sites with an editing
frequency of at least 0.1; (E) excluding sites in mis-mapped reads (by Blat correction) or near splice sites or in genomic regions containing poorly aligned reads.

transcriptome sequencing has enabled large scale investigations.
Several metrics have been proposed, some of them take into
account the global RNA editing activity (Tan et al., 2017; Roth
et al., 2019), while other approaches focus on specific sites

only (Khermesh et al., 2016; Silvestris et al., 2019). Below,
we illustrate the main metrics using GTEx RNAseq data from
four tissues and ten “body sites” (see section “Methods” for
further details).
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FIGURE 5 | Overall editing levels in 10 selected “body sites” from the GTEx project. Each box plot represents samples from one tissue type. The overall editing level
is defined as the percentage of edited nucleotides at all known editing sites. Cerebellum and skeletal muscle emerge, respectively, as the most edited tissue and the
less-edited tissue among the analyzed tissues.

FIGURE 6 | The effect of the number of sites on the overall editing. We calculated the overall editing calculated in all 123 GTEx samples using a growing number of
positions randomly selected from REDIportal database. The Pearson correlations between the overall editing measured per each group of positions and the same
metric on the entire REDIportal collection are depicted.

Overall Editing Level
To quantify the global RNA editing in a sample, one can average
the editing levels measured over the sites detected previously,
or by de novo methods (Tan et al., 2017). This metric, referred

to as the overall editing, is determined as the total number of
reads with G at all known editing positions over the number
of all reads covering the positions without imposing specific
sequencing coverage criteria (Tan et al., 2017). The overall editing
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depends on the number of known editing sites included in the
analysis that have to be the same for all samples analyzed. Using
de novo editing events for this purpose is not recommended,
as the number of detected sites is unevenly distributed across
samples and strongly depends on the amount of raw reads
input and the bioinformatics procedure (Picardi et al., 2015b;
Diroma et al., 2019). Even merging de novo candidates from all
samples of interest does not remove the coverage bias altogether.
Alternatively, one may calculate the overall editing employing
known events stored in public databases such as REDIportal
(Picardi et al., 2016), RADAR (Ramaswami and Li, 2014), or
DARNED (Kiran et al., 2013). To illustrate the behavior of the
overall editing index, we calculated this metric in 123 GTEx
RNAseq experiments from 10 “body sites” employing REDIportal
as it stores the largest public collection of human RNA editing
annotations (4,665,677 sites in its last release). As shown in
Figure 5, RNA editing appeared reduced in skeletal muscle
compared to other tissues, as already observed in previous
studies (Picardi et al., 2015b; Tan et al., 2017). On the contrary,
cerebellum displayed the highest RNA editing level. These
results are consistent with the Alu editing level among “body

sites” (Roth et al., 2019) with cerebellum emerging as the top
tissue carrying the highest editing level, higher that other brain
regions including cortex. It has been estimated that there are
about 3.6 times as many neurons in the cerebellum as in the
cortex (Herculano-Houzel, 2010). Possibly, the higher level in
cerebellum is merely a result of a higher fraction of neurons in
this tissue, as neurons are highly edited compared to other brain
cells (Gal-Mark et al., 2017).

To evaluate the effect of the number of RNA editing
positions on the robustness of the overall editing metric, we
randomly selected growing numbers of positions from the
REDIportal collection and calculated the overall editing per
each sampling and “body site.” Assuming the highest accuracy
when all REDIportal positions are used, we measured the
correlation between the overall editing calculated per each
group of positions and the same metric detected using the
whole database collection. As reported in Figure 6, 100,000
RNA editing positions are sufficient to obtain a very high
correlation (Pearson R = 0.99 Pval << 10−4) with the entire
REDIportal database. Using the RNA editing sites from DARNED
(333,215 sites) and RADAR (2,576,459 sites), we obtained a

FIGURE 7 | Distributions of Alu editing index (AEI) values over 10 selected tissue types from the GTEx project. AEI represents the weighted average editing level
across all expressed Alu sequences. Distributions are presented as box-plots. AEI clearly recapitulates the same trend as overall editing thus confirming that the sites
in Alu regions are those that have the greatest impact on the global editing activity.
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correlation with REDIportal of 95% (Pval << 10−4) and 99%
(Pval << 10−4), respectively.

Alu Editing Index
Another metric to quantify the global RNA editing activity is
to calculate the weighted average of editing events occurring
in all adenosines within Alu elements, defined as the AEI. As
mentioned above, the vast majority of editing activity takes place
within Alu elements, with almost every adenosine in the ADAR-
targeted Alu repeats being edited to some extent (Bazak et al.,
2014a). The AEI is defined to be the ratio (for convenience in
percentage) of the number observed A-to-G mismatches to the
total coverage of adenosines (both A-A matches and presumed
editing events, A-to-G mismatches). It is therefore the weighted
average of the measured editing levels weighted by the coverage of
each site (Bazak et al., 2014b). The AEI avoids the quantification
of editing rates per-sites, while accounting for editing in lowly
covered regions. It also frees the user from dependence on
public databases that might be continuously changing (or even
unavailable for other species). Since the AEI is calculated over
millions of positions it is highly robust to the number of input
raw reads, and as few as one million input reads already provide
a consistent and almost invariable signal (Roth et al., 2019). It
is, however, affected by the alignment process (i.e., aligner and

read lengths), but preserves the relative rank of each sample. As
an example, Figure 7 shows the distribution of AEI values for
123 GTEx samples, calculated as described in Roth et al. (2019).
Results indicate a general agreement between the measured AEI
and the overall editing index depicted above (Figure 5). It should
be noted that this approach is not limited to the human genome.
One can use the index for any organism, as long as a large set
of highly editable elements (often, SINE elements) is available
and the editing is strong enough to result in a sufficiently large
signal-to-noise ratio.

Recoding Index
Similarly to the overall editing, recoding activity due to RNA
editing could be quantified, focusing on editing levels at recoding
positions (residing in coding protein genes). For example, one
may calculate the weighted average over all known recoding sites,
known as the recoding editing index (REI) (Silvestris et al., 2019).
This measure is well correlated with ADAR2 expression, at least
in normal brain (Silvestris et al., 2019), and may be a good
indicator of ADAR2 deaminase activity. Interestingly, REI may
be utilized to investigate RNA editing deregulation in different
brain regions or neurological disorders (Khermesh et al., 2016)
or cancer (Silvestris et al., 2019). REI is simply defined as the
number of reads with G at recoding positions over the number

FIGURE 8 | Distributions of recoding editing index (REI) values over 10 selected tissues from the GTEx project reported as box-plots. REI is calculated as the
weighted average of editing levels over all known recoding sites from the REDIportal database. Most brain sub-tissues show similar levels of recoding editing.
A remarkable exception is represented by the aorta and tibial artery showing a surprisingly high editing level.
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of all reads covering the same positions (same as AEI, but for the
recoding sites). As in the case for the overall editing, the reliability
of REI depends on the number of recoding sites to assay. Indexing
over very small numbers, e.g., the 35 recoding sites known to
be conserved across the mammalian lineage (Pinto et al., 2014),
could lead to biased values and misleading conclusions. The
list of recoding sites can be obtained from databases such as
REDIportal (Picardi et al., 2016), RADAR (Ramaswami and Li,
2014), or DARNED (Kiran et al., 2013). However, one should
bear in mind that the false positive level of recoding sites in these
public collections is notoriously high.

Here, we show the REI results using 1585 non-synonymous
RNA editing events from REDIportal (see selection criteria in
section “Methods”) for the above GTEx RNAseq experiments
(Figure 8). Our results, similarly to those by Tan et al. (2017)
from the complete GTEx dataset, show a very high recoding
activity at arteries compared to other tissues, with lung and brain
being at similar levels and skeletal muscle showing the lowest REI
levels. Of note, the ADAR2 expression level (as shown by GTEx
in Supplementary Figure S1) overlaps well the results shown in
Figure 8. So far, many studies, including ours, have underlined
the important role played by RNA editing at recoding sites in the

central nervous system (CNS). In contrast, the role of A-to-I RNA
editing in angiogenesis, artery, endothelium, and vascular disease
was only recently explored (Stellos et al., 2016; Jain et al., 2018).
While Stellos et al. (2016) have pointed to ADAR1 activity within
the 3′ untranslated region (3′ UTR) of cathepsin S mRNA (CTSS),
Jain et al. (2018) reported that recoding at FLNA (Q/R) is an
important regulator of vascular contraction and blood pressure.
Our data and a previous study (Jain et al., 2018) indicated the
presence of some almost fully edited sites in artery, similar to the
GRIA2 Q/R in CNS, and extended the list of important recoding
sites in artery that may play a crucial role in vascular physiology
and diseases (Figure 9). Indeed, among the top edited genes in
arteries, there is the Insulin-like growth factor-binding protein
7 (IGFBP7). IGFBP7 is a secreted protein involved in diverse
biological functions, from apoptosis to inhibition/stimulation of
growth and angiogenesis (Brahmkhatri et al., 2015). Proteolytic
processing of IGFBP7 modulates its biological activity as it
can stimulate growth of DLD−1 colon carcinoma cells in
synergy with insulin/IGF−I but, if cleaved, IGFBP7 completely
abolishes this growth-stimulatory activity (Ahmed et al., 2003).
Interestingly, editing of IGFBP7 transcripts (K/R site) affects the
protein’s susceptibility to proteolytic cleavage, thus providing a

FIGURE 9 | Heatmap representing RNA editing levels at 99 selected recoding events. Body sites are reported in the same order as in the previous box-plots and
follow the same color code. The hierarchical clustering (dendrogram not shown) of the recoding sites shows how the artery (both aorta and tibial) are characterized
by a very peculiar and specific set of strongly (>90%) edited sites, thus suggesting a possible key functional role of these sites in the vascular system.
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means for a cell to modulate its multiple activity through A-to-I
RNA editing (Godfried Sie et al., 2012).

The REI is a measure of global RNA editing activity at
recoding sites. However, one should bear in mind that recoding
activity is often unevenly distributed across the different sites.
High REI values could mean overall high recoding activity, but
might also occur at a few highly expressed and highly edited
sites only. In the aforementioned artery samples, for instance,
three recoding events in IGFBP7 and FLNA transcripts account
for more than 90% of all edited Gs, and for the high value of
the REI as compared to other tissues. In case one is interested
in the distribution, a common practice is to look at graphical
visualizations of editing levels through all sites of interest, using,
for example, a heatmap plot (Figure 9).

Differential RNA Editing
An important question related to the RNA editing profiling is the
identification of differentially edited sites. A variety of statistical
tests have been proposed so far, but reliable, consistent, and
reproducible detection of dysregulated RNA editing is still a
major task. The observed A-to-I levels at individual sites depend

strongly on the methodology used to call them, sequencing depth
and coverage. Events residing in repetitive elements, comprising
the majority of A-to-I changes, exhibit low levels (typically lower
than 0.01), requiring ultra-high coverage for reliable detection
and quantification. A given position could appear edited in some
samples but unedited in others (because of limited coverage), a
fact that is often ignored in the statistical testing. Sometimes,
when the number of samples is sufficiently high, missing editing
levels could be imputed using methods based on the principal
component analysis (Josse and Husson, 2016), chained equations
(Buuren and Groothuis-Oudshoorn, 2011), or random forest
(Stekhoven and Bühlmann, 2012).

Finally, the large number of editing sites requires an aggressive
multiple-testing correction, and severely limits the statistical
power. This leads to an underestimate of the number of
differentially edited sites.

Identification of differential RNA editing is most relevant
at recoding sites, where altered A-to-I levels could lead to
different protein isoforms. Editing dysregulation at recoding sites
between two groups of samples is often assayed applying the two-
tailed MW U-test followed by Benjamin–Hochberg multiple test

FIGURE 10 | Volcano plot reporting the differentially edited sites between cerebellum and tibial artery. The horizontal dotted line marks a multiple test-corrected level
of significance (adjusted padj < 0.05, Mann–Whitney with Benjamini–Hochberg correction). The vertical dotted lines indicate a Delta editing of 0.1 and -0.1. Red,
blue, and gray points indicate, respectively, over-edited (UP) sites, under-edited (DOWN) sites, and non-significative sites (NS.).
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corrections. For example, such an approach was used to identify
many recoding sites differentially edited in cancer compared with
normal samples (Maas et al., 2001; Paz et al., 2007; Cenci et al.,
2008; Chen et al., 2013; Qin et al., 2014; Han et al., 2015; Paz-
Yaacov et al., 2015; Hu et al., 2016; Lin and Chen, 2019; Silvestris
et al., 2019). Here, we demonstrate this approach by detecting
statistically significant differentially recoded sites between 14
artery tibial and 12 cerebellum samples, looking at 1585 non-
synonymous REDIportal positions quantified using REDItools.
We considered only sites supported by at least 10 RNAseq
reads in at least the three samples per group, thus obtaining 85
positions to test for differential RNA editing levels (Figure 10).
Of these, 26 sites, residing in 21 target genes, were statistically
significant (Table 2). Sixteen positions appeared more edited in
artery tibial than cerebellum while 10 appeared more edited in
cerebellum than in artery tibial (Table 2). Sites showing higher
differences in RNA editing levels belonged to well-characterized
target genes such as COG3 (Han et al., 2015; Peng et al., 2018;
Silvestris et al., 2019), IGFBP7 (Chen et al., 2017), COPA (Han
et al., 2015; Peng et al., 2018), FLNA (Riedmann et al., 2008;
Jain et al., 2018), and ZNF358 (Zhang et al., 2016; Lee et al.,
2017). The functional impact of RNA editing at these substrates
is mostly unknown.

As an alternative to MW U-test, deregulated A-to-I editing has
been identified using the statistical pipeline proposed by Tran
et al. (2019) to detect dysregulated RNA editing in brains of
autistic individuals. In this case, differential RNA editing sites
are defined as positions having significantly different average
editing levels between autistic donors and controls, or observed
at significantly different population frequencies (Tran et al.,
2019). Editing candidates are ranked by read coverage and the
Wilcoxon rank-sum test is used if at least five samples in both
control and donor groups have the required depth (Tran et al.,
2019). By applying this pipeline to the above data, we found 10
differentially edited sites, eight of them already detected by the
MW U-test (Table 2).

To date performance of statistical tests for differential RNA
editing has never been tested and systematically assessed.
Typically, the tests applied ignore the inherent noise introduced
by the limited reads’ coverage. Generally, tests assuming a normal
distribution of RNA editing levels (such as the t-test) should
be avoided. Indeed, accumulating evidence from large scale
projects indicates that RNA editing levels seem to follow a beta
distribution rather than a normal distribution (Picardi et al.,
2015b). Further investigations are, in any case, needed to better
understand the statistical properties of RNA editing levels.

TABLE 2 | Statistically significant differential recoding sites.

Chr:position Gene AA change 1 editing Pval (MW) Padj (BH)

chr4:57976234* IGFBP7 K95R −0.417 0.000015 0.000016

chr13:46090371 COG3 I635V −0.536 0.000016 0.000017

chr19:7585273 ZNF358 K382R −0.381 0.000016 0.000017

chr1:160302244* COPA I164V −0.416 0.000017 0.000018

chr4:57976286* IGFBP7 R78G −0.522 0.000019 0.000019

chrX:153579950* FLNA Q474R −0.310 0.000027 0.000027

chr4:17805279 DCAF16 I162M 0.059 0.000088 0.000088

chr8:103841636 AZIN1 S367G −0.081 0.000218 0.004633

chr20:36147572* BLCAP Y2C 0.090 0.000295 0.005015

chr20:36147563 BLCAP Q5R 0.063 0.000178 0.005043

chr4:77979680 CCNI R61G −0.100 0.000132 0.005610

chr20:36147533 BLCAP K15R 0.029 0.000464 0.005634

chr19:14593605 GIPC1 T62A −0.237 0.000458 0.006488

chr12:133682596 ZNF140 Y142H 0.061 0.000998 0.010604

chr14:26917530 NOVA1 S363G 0.099 0.000128 0.010880

chr3:9876560 TTLL3 K419R 0.016 0.001442 0.011143

chr3:58141801* FLNB Q2103R −0.228 0.001180 0.011144

chr5:156736808 CYFIP2 K124E −0.007 0.001350 0.011475

chr15:75646086 NEIL1 K242R 0.182 0.001673 0.011850

chr4:77977164 CCNI K123R −0.009 0.002107 0.013777

chr1:12091858 MIIP S355G 0.018 0.002867 0.017407

chr21:34922801* SON T422A −0.146 0.003614 0.020479

chr3:58141791 FLNB M2100V −0.116 0.004256 0.022610

chr18:32825609 ZNF397 K314E 0.058 0.004582 0.022910

chr10:79397298 KCNMA1 S35G −0.051 0.005179 0.024456

chr6:44120349* TMEM63B Q619R −0.144 0.006899 0.030864

Per each position we report the target gene and amino-acid change induced by RNA editing, the difference between mean editing levels of groups, the Mann–Whitney
p-value, and the adjusted p-value by Benjamin–Hochberg. Positive 1 values indicate higher editing in cerebellum than artery, while negative 1s are associated to lower
editing in cerebellum than artery. Positions marked by * are differentially edited by also the Tran et al. statistical pipeline.
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CONCLUSION

RNAseq is currently the technology of choice for large-
scale studies of transcriptional and co-/post-transcriptional
mechanisms. In the last few years, several computational
tools have been developed to profile A-to-I editing in a
variety of RNAseq data. Yet, RNA editing prediction is
still not a fully solved bioinformatics task. However, noise
and biases due to sequencing errors, read-mapping errors,
and SNPs can be partly mitigated pre-processing reads
and fine tuning program parameters depending on the
selected algorithm.

The accurate detection of A-to-I editing is indispensable to
systematically quantify RNA editing and facilitate comparative
investigations across multiple samples. Similarly, A-to-I
quantification metrics should be carefully selected. Indeed,
measuring RNA editing activity across samples counting de novo
detected sites or averaging over de novo sites leads to very noisy
and confounding results. RNA editing is unevenly distributed
across samples and different intrinsic (read quality, coverage, or
depth) and extrinsic (mapping tool, read pre-processing, RNA
editing calling software) factors affect the de novo detection that
is far from being exhaustive. Averaging over millions of known
sites from public databases can help but it requires estimated
RNA editing levels that are dependent on a prefixed coverage
cut-off that, in turn, drastically reduces the number of usable
sites and leads to unreliable, often irreproducible, measures.
The weighted average (or an index) over millions of known
sites from public database, named here as the overall editing,
is a much better solution. However, using this approach one
has to rely on a specific set of sites from a given database, a
set that might be continuously being modified. In contrast, the
AEI is calculated over all tens of millions of genomic adenosines
located within Alu sequences and accounts for the editing
activity in low covered regions, while avoiding the need to
quantify the editing level per-site. An index similar to AEI can
be determined for recoding events. However, as the number of
recoding sites is much lower, and the current set is known to
be very noisy, the REI, while informative in some cases, should
be used with care.

Identification of differential RNA editing is an important task.
Although many studies have been employing various parametric
and non-parametric approaches, further investigations are
required. Given the non-normal distribution of RNA editing
levels, and the strong (yet, usually ignored) effect of variable

coverage, ad hoc models may be probably required to better
perform this task.
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