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Epigenetic plasticity is a pivotal factor driving metastasis. Here, we show that the promoter of the 

gene encoding the ubiquitin ligase subunit FBXL7 is hypermethylated in advanced prostate and 

pancreatic cancers, correlating with decreased FBXL7 mRNA and protein levels. Low FBXL7 

mRNA levels are predictive of poor survival in patients with pancreatic and prostatic cancers. 

FBXL7 mediates the ubiquitylation and proteasomal degradation of active c-SRC upon its 

phosphorylation on Ser104. The DNA-demethylating agent decitabine recovers FBXL7 expression 

and limits epithelial-to-mesenchymal transition and cell invasion in a c-SRC-dependent manner. In 
vivo, FBXL7-depleted cancer cells form tumors with high metastatic burden. Co-silencing of c-

SRC or treatment with the c-SRC inhibitor dasatinib prevents metastases. Furthermore, decitabine 

reduces metastases derived from prostate and pancreatic cancer cells in a FBXL7-dependent 

manner. Collectively, this work implicates FBXL7 as a metastasis suppressor gene and suggests 

therapeutic strategies to counteract metastatic dissemination of pancreatic and prostatic cancer 

cells.

Introduction

Metastatic spread is the most common cause of cancer-related death1–3. Cancer 

dissemination involves multiple steps, including cells’ escape from the primary tumor, local 

invasion, intravasation/extravasation, and colonization of distant tissues. Despite extensive 

efforts, still relatively little is known about the detailed molecular mechanisms driving 

metastasis during the natural history of cancer progression. One hypothesis is that 

epigenetic, transcriptional programs contribute to drive the metastatic cascade4.

DNA methylation is one of the epigenetic mechanisms that cells use to modulate gene 

expression. Gains in DNA methylation in cancer cells typically reflect hypermethylation of 

CpG islands in the gene promoter region that leads to highly stable gene silencing that is 

transmittable over the course of many cell cycles. Promoter methylation of CpG islands of 

many tumor suppressor genes occurs during cancer progression as an alternative mechanism 

to gene copy loss or mutational inactivation, thus representing a bona-fide tumor-driving 

event5, 6. Notably, epigenetic reprogramming has been involved in the cell plasticity required 

during epithelial-to-mesenchymal transition (EMT), a process in which epithelial cells lose 

their junctions to gain a motile, migratory mesenchymal phenotype7.

Performing pan-cancer promoter methylation analysis, we found that the gene encoding 

FBXL7 is frequently hypermethylated in human aggressive cancers. The studies that 

followed this initial observation are described herein.

Results

FBXL7 is silenced by promoter hypermethylation in advanced human cancers

F-box proteins function as substrate receptors for SCF (SKP1, CUL1, F-box protein, RBX1) 

ubiquitin ligases complexes, which play important roles in the regulation of several cancer 

hallmarks8–10. For example, FBXW7 is the product of one of the top 20 genes mutated in 

human cancers. When we profiled 15 cancer cohorts of The Cancer Genome Atlas (TCGA) 

project, we confirmed that FBXW7 was the most highly mutated gene within the 69 
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members of the human F-box protein family (Extended Data Fig. 1a). However, the other 

members displayed only sporadic mutations. Since the promoters of many tumor 

suppressors are hypermethylated in human cancers to stably silence their expression, we 

evaluated the methylation status of the promoters of the 69 genes encoding F-box proteins. 

To this end, we used the same TCGA dataset and the pan-cancer methylation database 

MethHC (http://MethHC.mbc.nctu.edu.tw)11. As a comparison, we also analyzed 14 tumor 

suppressor genes, which are known to be hypermethylated in human cancers5, 6, 12. Analysis 

of the average beta value in tumor samples and matched normal samples showed that the 

promoter of the gene encoding the F-box protein FBXL7 is the most hypermethylated one 

among the 85 genes analyzed (Fig. 1a).

FBXL7 protein was expressed at low levels in invasive cancer cells compare with paired 

immortalized cells (PC-3 prostate cancer cells vs. immortalized PNT1A prostate cells; PL45 

pancreatic cancer cells vs. immortalized H6c7 pancreatic ductal cells; and MDA-MB-231 

and MDA-MB-436 breast cancer cells vs. immortalized MCF10A breast cells) (Fig. 1b). 

Reduced FBXL7 protein levels in aggressive cancer cells correlated with hypermethylation 

of the CpG island within the FBXL7 promoter (Fig. 1c; Extended Data Fig. 1b; http://

www.urogene.org/cgi-bin/methprimer/methprimer.cgi). We confirmed downregulation of 

FBXL7 protein, reduced FBXL7 mRNA levels, and FBXL7 promoter hypermethylation in a 

panel of 9 pancreatic cancer cell lines compared with immortalized H6c7 pancreatic ductal 

cells (Fig. 1d,e; Extended Data Fig. 1c,d).

Pancreatic cancer forms metastases very early, so, to assess whether FBXL7 promoter 

methylation occurs early during cancer development, we used as a model cells from prostate 

cancer, a slow-progressing cancer. Using primary, diploid, normal prostate epithelial cells 

(PrEC1), two normal immortalized prostate cell lines (PNT1A and RWPE), two hormone-

naïve low-metastatic prostate cancer cell lines (LAPC4 and LNCaP), and three castration-

resistant low-metastatic prostate cancer cell lines (C4–2, DU145, and PC-3)13, 14, we found 

that FBXL7 protein and mRNA were downregulated in the relatively more aggressive PC-3 

and DU145 cells (Fig. 1f and Extended Data Fig. 1e). Consistently, FBXL7 promoter was 

highly methylated in PC-3 and DU145 cells (Fig. 1g and Extended Data Fig. 1f). Decreased 

FBXL7 protein DU145 and PC-3 cells did not correlate with changes in androgen receptor 

(AR) levels (Fig. 1f) and large-scale analysis of the TCGA prostate dataset showed no 

correlation between FBXL7 and AR mRNA levels (Extended Data Fig. 1g). We also 

analyzed two highly metastatic derivatives of PC-3 cells (PC-3M and PC-3M-LN4; 

metastatic potential: PC-3M-LN4 > PC-3M > PC-3)15 and found that the metastatic 

derivatives displayed even lower levels of FBXL7 protein and mRNA, and a further increase 

in FBXL7 promoter methylation compared to the parental PC-3 cells (Fig. 1f,g and 

Extended Data Fig. 1e,f).

Treatment of AsPC1 pancreatic cancer cells as well as PC-3, PC-3M, and PC-3M-LN4 

prostate cancer cells with the FDA-approved methylase inhibitor 5-aza-2’-deoxycytidine (5-

AZA or decitabine) increased FBXL7 protein and mRNA expression levels (Fig. 1h,i and 

Extended Data Fig. 1h), showing that epigenetic suppression of FBXL7 expression is a 

relevant mechanism in the regulation of FBXL7 levels in both prostate and pancreatic 

cancer.
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Next, we extracted genomic DNA, mRNA, and proteins from benign prostate tissues, Stage 

II, and Stage III/IV prostate cancer specimens, and found increased methylation of the 

FBXL7 promoter and decreased levels of FBXL7 mRNA and protein in Stage III/IV prostate 

cancers (Fig. 2a–c and Supplementary Table 1). Hypermethylation of the FBXL7 promoter 

was directly correlated with higher Gleason grade, and higher pathological (pT) and disease 

stage (Fig. 2d). Notably, survival analysis of prostate and pancreatic cancer patients revealed 

that patients with lower FBXL7 mRNA levels have significantly reduced survival probability 

(Fig. 2e), indicating that suppression of FBXL7 expression may be clinically important 

during cancer progression.

We next assessed the oncogenic potential of FBXL7 downregulation in cell systems. FBXL7 

knockdown in pancreatic and prostate cancer cells significantly increased cell invasion 

through a layer of Matrigel (Fig. 2f), but not cell proliferation, which was instead inhibited 

(Extended Data Fig. 1i). Notably, treatment of AsPC1, PC-3, PC-3M, and PC-3M-LN4 cells 

with decitabine significantly decreased cell invasion (Fig. 2g). This phenotype was 

dependent on FBXL7 expression, since decitabine had no effect or a modest effect in the 

context of FBXL7 silencing. This result suggests that FBXL7 downregulation increases the 

metastatic potential of tumor cells, while suppression of FBXL7 promoter methylation 

decreases it, and shows that decitabine works, at least in part, by upregulating FBXL7.

FBXL7 mediates the proteasomal degradation of active c-SRC upon phosphorylation on 
Ser104

To identify potential FBXL7 substrates that could mediate its pro-invasive phenotype, we 

expressed FLAG-tagged FBXL7 in HEK-293T cells and subjected the anti-FLAG 

immunoprecipitates to mass spectrometry analysis. Among the proteins identified in the 

FBXL7 complex, we found peptides corresponding to c-SRC, a non-receptor protein kinase 

involved in several cancer hallmarks, including cell invasion and metastasis16, 17. Screening 

of a panel of 13 F-box proteins expressed in HEK-293T cells confirmed that c-SRC 

specifically interacted with FBXL7 (Extended Data Fig. 2a). This association was further 

confirmed with endogenous proteins in LAPC4 and PNT1A cells (Fig. 3a and Extended 

Data Fig. 2b). FBXL7 co-immunoprecipitated active c-SRC, i.e. p-c-SRC (Y419)18, but not 

inactive c-SRC, i.e. p-c-SRC (Y530) (Fig. 3a; Extended Data Fig. 2b,c). c-SRC(Y530F), a 

constitutively active version of c-SRC in which the negative tyrosine regulator Y530 is 

mutated to phenylalanine, exhibited increased binding to FBXL7 compared to wild-type c-

SRC (Extended Data Fig. 2d). By contrast, c-SRC(Y419F), an inactive c-SRC mutant in 

which the positive tyrosine regulator Y419 is mutated to phenylalanine, co-

immunoprecipitated FBXL7 less robustly than wild-type c-SRC (Extended Data Fig. 2d). 

FBXL7 expression induced a decrease in endogenous p-c-SRC (Y419) levels (and to a lesser 

extent total c-SRC), but not p-c-SRC (Y530) (Fig. 3b). Treatment with the proteasome 

inhibitor MG132 rescued the cellular levels of p-c-SRC (Y419), suggesting that the lower 

levels were due to enhanced proteolysis. Co-transfection of FBXL7 and Ubiquitin (Ub) 

induced the appearance of high-molecular-weight bands in c-SRC immunoprecipitates (Fig. 

3c). These slow migrating bands were ubiquitylated species of c-SRC since they were not 

present when c-SRC was co-transfected with FBXL7 and Ub(K0), a mutant in which all 

lysine residues were mutated to arginine, preventing chain elongation. Moreover, 
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FBXL7(ΔF-box) was unable to promote the ubiquitylation of c-SRC. FBXL7 ubiquitylated 

constitutively active c-SRC (Y530F) more extensively than c-SRC wild-type, consistent with 

increased binding. Finally, we silenced FBXL7 expression in PNT1A and DU145 cells and 

observed increased expression and stability of total c-SRC and p-c-SRC (Y419) (Fig. 3d and 

Extended Data Fig. 2e). Silencing of c-CBL, an ubiquitin ligase previously reported to target 

c-SRC19, stabilized EGFR, one of its established substrates, but did not affect c-SRC levels 

(Fig. 3d), in agreement with Teckchandani et al.20. Overall, these results indicate that 

FBXL7 promotes the ubiquitylation and degradation of c-SRC.

We also mapped the FBXL7 binding domain in c-SRC and narrowed it to the SH3 domain, 

between amino acids 102 and 116 (Extended Data Fig. 3a–c). Within this region, a Ser to 

Ala mutation at position 104 [generating c-SRC(S104A)] prevented co-precipitation with 

FBXL7 (Fig. 3e and Extended Data Fig. 3d), indicating that Ser104 is necessary for efficient 

binding of c-SRC to FBXL7. By contrast, mutations of Ser104 to the phospho-mimetic 

residues Glu or Asp [generating c-SRC(S104E) and c-SRC(S104D), respectively] did not 

alter c-SRC binding to FBXL7 (Fig. 3e and Extended Data Fig. 3d). We also used 

immobilized, synthetic peptides containing the candidate binding sequence (amino acids 97–

111) and assayed their ability to bind FBXL7. While the peptide containing phosphorylated 

Ser104 was able to efficiently bind FBXL7, but not c-CBL, FBXO1, FBXL1 or FBXW1, the 

corresponding peptide containing non-phosphorylated Ser104 was not able to bind any of 

the proteins analyzed (Extended Data Fig. 3e,f). Accordingly, treatment with λ-phosphatase 

inhibited binding between FBXL7 and c-SRC (Extended Data Fig. 3g). Steady-state levels 

and stability of c-SRC(S104A) were increased compared to wild-type c-SRC (Fig. 3e,f). 

Similarly, c-SRC(S104F), a Ser104 to Phe mutant mimicking a mutation associated with 

metastatic pancreatic cancer (www.cbioportal.org), did not bind FBXL7 and was more stable 

than wild-type c-SRC (Fig. 3e,f). Next, we generated a phospho-specific antibody against a 

peptide containing p-Ser at position 104 and found that this antibody recognized wild-type 

c-SRC and c-SRC(S104E), but not c-SRC(S104A) (Extended Data Fig. 3h). This result 

demonstrated that Ser104, an amino acid residue that is well exposed in c-SRC (Extended 

Data Fig. 3i), is phosphorylated in vivo, in agreement with three large-scale proteomics 

studies21–23. Notably, levels of p-c-SRC (S104) decreased following FBXL7 expression, and 

c-SRC protein bound to FBXL7 was phosphorylated on S104 (Extended Data Fig. 3j).

Collectively, the above results indicate that FBXL7 (a) recognizes the SH3 domain of c-SRC 

when Ser104 is phosphorylated and (b) specifically targets the active form of c-SRC for 

degradation.

Defects in the FBXL7-mediated degradation of c-SRC increase cell migration, invasion, 
and the expression of EMT markers

Many c-SRC’s substrates (e.g., FAK, ETS1, and β-CATENIN) have been linked to the 

metastatic program24–26. In addition, activation of c-SRC has been linked to stabilization of 

transcription factors promoting the EMT and cell invasion, like SNAIL, SLUG, and 

ETS125–27. To study the biological significance of the FBXL7-mediated degradation of c-

SRC in modulating cell migration, PNT1A and PC-3 cells were transiently transfected with 

either wild-type c-SRC, c-SRC(S104F), or c-SRC(S104A). Compared to control cells, cells 
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expressing wild-type c-SRC showed an increase in cell migration, as measured by their 

ability to migrate towards a chemoattractant (Fig. 3g). However, PNT1A cells transfected 

with c-SRC(S104F) or c-SRC(S104A) displayed an even more pronounced migratory 

phenotype and expressed higher levels of ETS1 and EMT markers (VIMENTIN and 

TWIST) (Fig. 3h). c-SRC(S104F) and c-SRC(S104A) also promoted the invasive capability 

of PC-3 cells, as measured by their ability to invade through a thin layer of Matrigel in a 

Boyden chamber (Fig. 3i) without affecting the proliferation of adherent and non-adherent 

cells (Fig. 3j,k).

We next transfected two different siRNAs to FBXL7 in PNT1A, LAPC4, PL45, and MCF-7 

cells (Fig. 4a,b and Extended Data Fig. 4a,b). FBXL7 knockdown resulted in a characteristic 

cellular phenotype: (i) upregulation of c-SRC, p-c-SRC (S104), and p-c-SRC (Y419); (ii) 
upregulation of c-SRC substrates and their phosphorylated species including FAK, p-FAK 

(Y576/577), β-CATENIN, p-β-CATENIN (Y333), p-β-CATENIN (Y654), ETS1, and p-

ETS1; (iii) upregulation of cyclin D1, a target of β-CATENIN; (iv) acquisition of an EMT 

profile exemplified by a decrease in E-CADHERIN expression and an increase in the levels 

of N-CADHERIN, VIMENTIN, ZEB1, ZEB2, TWIST, SNAIL, and SLUG; and (v) 
upregulation of VEGF, an angiogenic factor regulated by c-SRC28. Moreover, FBXL7 

depletion in PNT1A cells resulted in decreased expression of the basal cell markers p63 and 

CK5 (Fig. 4a). The increase in EMT induced by FBXL7 depletion in PNT1A cells 

correlated with increased cell motility and migration (Extended Data Fig. 4c,d), but was not 

associated with the acquisition of a malignant phenotype, as assessed by absence of colony 

formation in soft agar assays (Extended Data Fig. 4e). Notably, the appearance of EMT 

markers as well as increased cell motility and migration were reversed by treatment with the 

c-SRC inhibitors SU6656 or dasatinib (Extended Data Fig. 4c,d,f). Similarly, the increase in 

EMT induced by FBXL7 knockdown in LAPC4 and PC-3 cells correlated with increased 

cell migration and invasion, but decreased proliferation of both adherent and non-adherent 

cells (Fig. 4b,c and Extended Data Fig. 1i). The increased EMT markers and invasive 

capability of FBXL7-depleted PC-3 cancer cells were suppressed by co-depletion of c-SRC 

(Fig. 4c). Overexpression of FBXL7 in PC-3 cells resulted in a reduction of EMT markers, 

cell motility, and cell invasion (Fig. 4d and Extended Data Fig. 4g). In aggregate, these 

results demonstrate that suppression of the FBXL7-mediated degradation of c-SRC 

promotes EMT and a migratory phenotype.

FBXL7 is downregulated and c-SRC is upregulated in highly aggressive human pancreatic 
and prostate cancers

We examined the expression of c-SRC in pancreatic cell lines: all 9 pancreatic cancer cell 

lines had higher levels of c-SRC, p-c-SRC (S104), and p-c-SFK (Y419) compared to 

immortalized H6c7 cells derived from normal human pancreatic duct epithelial cells (Fig. 

5a). Similarly, the PC-3M-LN4 > PC-3M > PC-3 invasive prostate cell lines displayed a 

progressive increase in active and total c-SRC levels (Fig. 5b). Treatment of pancreatic and 

prostate cancer cells with decitabine increased the levels of FBXL7 (as observed in Fig. 1h,i) 

and decreased the levels of total c-SRC (both endogenous and exogenous), phosphorylated 

c-SRC (Y419), ETS1, EMT markers, total β-CATENIN and p-β-CATENIN (Y654) (Fig. 

5c–e). By contrast, although decitabine treatment increased FBXL7 expression, levels of the 
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stable c-SRC(S104A) mutant, as well as endogenous ETS1 and TWIST did not decrease 

(Fig. 5e), confirming that FBXL7 is unable to target c-SRC(S104A) and indicating that the 

effect of decitabine on EMT markers is dependent on c-SRC.

We also analyzed FBXL7 and c-SRC expression in normal and neoplastic human prostate 

and pancreatic tissues using tissue microarray (TMA) platforms. In Stage I pancreatic 

carcinomas and in Stage II prostatic carcinomas, FBXL7 levels did not change significantly 

compared to normal tissues. However, the majority of Stage II-IV pancreatic and Stage 

III/IV prostatic cancers lost FBXL7 expression (Fig. 5f,g and Extended Data Fig. 5a,b). 

Notably, an inverse correlation was found between FBXL7 and c-SRC levels in both cancers 

(Fig. 5f,g, Extended Data Fig. 5a,b, and Fig. 2c). Analysis of four Oncomine prostate cancer 

datasets showed that the decrease in FBXL7 mRNA levels in prostate cancer is not 

associated with an increase in c-SRC mRNA levels (Extended Data Fig. 6), in agreement 

with the post-transcriptional regulation of c-SRC by FBXL7.

Human cancers display mutations in FBXL7 and SRC, resulting in the stabilization of c-
SRC

We assessed whether cancer-associated mutations identified in the FBXL7 and SRC genes 

(www.cbioportal.org and www.cancer.sanger.ac.uk/cosmic) may play a role in the 

upregulation of c-SRC expression observed in human cancers. We generated a panel of 

FBXL7 and c-SRC mutants mimicking the mutations detected in human cancers 

(Supplementary Table 2). Compared to wild-type FBXL7, FBXL7(R310H), a mutant 

reported in both metastatic prostate cancer and pancreatic ductal adenocarcinoma, displayed 

a weak binding to c-SRC (Fig. 6a). Moreover, FBXL7(R310H) was unable to induce the 

degradation of c-SRC (Fig. 6b). Similarly, FBXL7(P65S) and FBXL7(P93L) displayed 

weak/no binding to c-SRC and were unable to promote c-SRC degradation (Fig. 6a,b). 

FBXL7(Q271H), FBXL7(R353Q), FBXL7(T458M), FBXL7(R480H), FBXL7(R480C), and 

FBXL7(Y145*) did bind c-SRC efficiently, but displayed impaired interaction with CUL1 

and/or SKP1, likely explaining why they were unable to induce the destabilization of c-SRC 

when expressed in DU145 cells (Fig. 6a,b). In addition to c-SRC(S104F) described earlier, 

we found other tumor-associated mutants with defects in degradation. c-SRC(N116D), 

mimicking a mutation found in early-onset prostate carcinoma, displayed a reduced 

phosphorylation on Ser104, and, accordingly, exhibited a weak binding to FBXL7, as well 

as increased c-SRC stability (Fig. 6c–e). Similarly, c-SRC(R110Q) and c-SRC(T117I) also 

consistently showed reduced binding to FBXL7 (Fig. 6f). Thus, although mutations in 

FBXL7 and SRC are relatively rare (Supplementary Table 2), they represent a further 

mechanism utilized by cancer cells to increase the levels of c-SRC.

FBXL7 loss promotes c-SRC-dependent metastases in mouse models of prostate and 
pancreatic cancers

We then investigated whether the results obtained in cell systems were relevant at the 

organismal level. Because PC-3 cells have low metastatic potential in vivo15, 29, 30 and the 

decreased expression of FBXL7 in these cells promotes EMT (Fig. 4c), PC-3 cells 

constitutively expressing luciferase were stably transduced with doxycycline-dependent 

shRNA constructs [either a NT (non-targeting) shRNA, FBXL7 shRNA, or both FBXL7 and 
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c-SRC shRNAs] and injected into the ventral prostate of NOD/SCID mice. Suppression of 

FBXL7 expression by doxycycline resulted in small primary prostate tumors with low Ki67-

proliferative index and high levels of ZEB1 and ZEB2, two EMT markers (Fig. 7a,b and 

Extended Data Fig. 7a,b). In contrast, tumors transduced with both FBXL7 and c-SRC 

shRNAs were similar in size to NT shRNA tumors and expressed low levels of ZEB1 and 

ZEB2. Despite their smaller tumor size, only FBXL7 shRNA tumors gave rise to sparse 

micrometastases (Extended Data Fig. 7c). In similar experiments, we also used the more 

metastatic derivatives of PC-3, i.e. PC-3M cells, stably expressing luciferase and GFP, that 

when injected into the ventral prostate of NOD/SCID mice developed metastatic tumors 

(Fig. 7c,d). FBXL7 knockdown resulted in reduced primary tumor size, increased levels of 

ZEB1 and ZEB2, and decreased levels of E-CADHERIN (Fig. 7c). Notably, FBXL7 

depletion significantly increased lung metastasis formation, as evaluated by FACS analysis 

of GFP-positive cells metastasized to the lungs (Fig. 7d). Decitabine treatment reduced the 

size of the primary tumors both in control and FBXL7 shRNA-expressing mice, but 

inhibited metastasis formation only in control mice (Fig. 7d), suggesting that decitabine 

reduces metastasis through a FBXL7-mediated mechanism.

Next, we evaluated two mouse models of pancreatic cancer using PdxCre;LSL-
KrasG12D;p53R172H mouse FC1242 pancreatic adenocarcinoma cells31 and FBXL7−/− 

FC1242 cells (Extended Data Fig. 8a). Immunoblot analyses showed that both FBXL7 
knockout and knockdown in FC1242 cells resulted in increased levels of c-SRC and p-c-

SRC (Y419), as well as higher levels of EMT markers (Extended Data Fig. 8b, d). No 

significant difference in cell proliferation was observed between FBXL7−/− FC1242 and 

parental FC1242 cells (Extended Data Fig. 8c). However, FBXL7−/− FC1242 cells exhibited 

increased migratory capacity and anchorage-independent growth (Extended Data Fig. 8c). 

We then used a portal venous hematogenous metastasis model to measure the ability of 

parental and FBXL7−/− FC1242 cells to form metastases in the liver, a metastatic site in 

>90% of patients with advanced pancreatic cancer32. Strikingly, all mice injected with 

FBXL7−/− FC1242 cells (11/11) displayed high volume metastatic disease to the liver, 

whereas nearly all mice (10/11) injected with parental FC1242 cells were protected (Fig. 

8a).

In a second pancreatic in vivo model, parental and FBXL7−/− FC1242 cells were 

orthotopically implanted in the tail of the pancreas. FBXL7 knockout tumors had increased 

expression of ZEB1 and ZEB2, and developed spontaneous metastases to distant organs, 

including the peritoneum, kidney, liver, bladder, and epididymis (Fig. 8b,c and Extended 

Data Fig. 8e,f). By contrast, parental FC1242 cells formed smaller primary tumors with no 

evidence of metastases. Treatment with the c-SRC inhibitor dasatinib rescued the metastatic 

phenotype of FBXL7−/− FC1242 cells in all tissues (Fig. 8c and Extended Data Fig. 8f). 

Dasatinib treatment had no effect on primary tumor burden (Fig. 8b), indicating that the 

effect of dasatinib on metastasis is not due to a reduced primary tumor growth and that, in 

contrast to metastasis, FBXL7 may affect growth of the primary tumor through a c-SRC-

independent mechanism.

In a third mouse model of pancreatic cancer, AsPC1 human pancreatic cancer cells stably 

expressing either GFP-tagged FBXL7 shRNA or NT shRNA were orthotopically injected in 
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immunocompromised Rag1-deficient mice. AsPC1 FBXL7 shRNA cells formed tumors 

larger than NT shRNA expressing cells, consistent with increased colony formation in soft-

agar (Fig. 8d and Extended Data Fig. 8g), and expressed high levels of ZEB1 and ZEB2 

(Extended Data Fig. 8h). FACS analysis of the liver showed a significant increase in the 

number of GFP-positive cells derived from FBXL7 shRNA implanted cells relative to 

controls (Fig. 8d). Finally, when injected directly in the portal vein of immunocompromised 

Rag1-deficient mice, human AsPC1 FBXL7 shRNA cells metastasized to the liver more 

than control cells (Fig. 8e). Notably, a single injection of decitabine significantly reduced 

metastasis formation using control AsPC1 cells, but not FBXL7 shRNA-expressing AsPC1 

cells (Fig. 8e), suggesting that decitabine is effective in reducing metastatic spread of 

pancreatic cancer cells in a FBXL7-dependent manner.

Discussion

Here, we report an anti-metastatic role for FBXL7 in cancer, whereby promoter 

hypermethylation results in silencing of FBXL7 in pancreatic cancer and high stage prostate 

adenocarcinomas, promoting metastatic spread. FBXL7 is located on chromosome 5p, a 

region frequently amplified in human cancers; yet within this amplicon, FBXL7 mRNA is 

often the sole construct that is downregulated33–36. This is consistent with our analysis 

showing that the FBXL7 promoter is highly methylated in cancer. In prostate cancer, FBXL7 
promoter methylation directly correlates with higher Gleason grade, pT stage, and disease 

stage. Notably, low FBXL7 mRNA levels are associated with poor survival in both patients 

with pancreatic and prostatic cancer.

We found that FBXL7 mediates the degradation of c-SRC and that hypermethylation of the 

FBXL7 promoter is associated with increased c-SRC levels in human prostate and 

pancreatic cancer specimens and cancer cell lines.

Overexpression of c-SRC occurs in many solid tumors, mostly at later stages of the 

disease17. Pancreatic cancer, one of the most lethal malignancies, displays, among other 

aberrations, c-SRC overexpression and/or activation in more than 70% of primary tumors37. 

A progressive increase in c-SRC activity is observed as cancer evolves towards a more 

invasive phenotype, likely because c-SRC mediates EMT and increases the migratory 

capacity of tumor cells, as well as survival in the circulation and extravasation 38, 3940, 41. 

Increased c-SRC protein levels and activity in prostate and pancreatic cancers predict poor 

prognosis and are associated with vascular invasion, lymph node metastasis, and reduced 

survival37, 40, 42–46. Mechanistically, overactivation of c-SRC mediates a metastatic 

phenotype through the phosphorylation of a plethora of protein substrates, although some 

may play a predominant role24–26, 40, 47.

We demonstrated that suppression of FBXL7 enables the formation of distant metastases in 

orthotopic models of prostate and pancreatic cancers in a c-SRC-dependent manner. We 

propose that epigenetic loss of FBXL7 in cancer cells and consequential increased c-SRC 

levels may promote both early steps of the invasion-metastasis cascade (i.e. local infiltration, 

intravasation, and dissemination) and possibly later steps of the metastatic cascade.
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While our results show that the effect of FBXL7 loss on cell invasion is dependent on the 

stabilization of c-SRC both in prostate and pancreatic cells, they indicate that FBXL7 

control cell proliferation in a tissue type-dependent manner, possibly through the regulation 

of different sets of substrates48, 49 in the various cell types.

Our in vivo results suggest that targeting c-SRC with dasatinib or other inhibitors in a 

neoadjuvant setting holds promise in the therapeutic treatment of patients with high-risk 

prostate cancer or with resectable pancreatic cancer. Moreover, our data highlight the 

potential efficacy of decitabine treatment in preventing the metastatic spread in a selective 

cohort of prostate and pancreatic cancers, i.e. those displaying hypermethylation of the 

FBXL7 promoter.

Overall, our results imply that early epigenetic changes represent a crucial event in 

determining cancerous dissemination, but do not necessarily affect the growth of the primary 

tumor. As hypermethylation of the FBXL7 promoter is observed in a variety of human 

cancers, our observations in prostate and pancreatic cancers may have implications for other 

solid tumors.
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Extended Data

Extended Data Fig. 1: Genes encoding F-box proteins are not highly mutated in human cancers
a, Heat map showing percentages of samples mutated in the indicated genes, across 

individual tumor types or pan-cancer, and ranked by their percent mutation rate in pan-

cancer. Genes encoding F-box proteins are in black; different cancer genes are in blue.

b, Scheme showing the CpG island within the FBXL7 promoter and the primers used to 

assess FBXL7 promoter methylation by methylation-specific PCR analysis.
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c, Total RNA extracts from the indicated pancreatic cells were analyzed for FBXL7 mRNA 

levels by qPCR. Mean ± s.d. is shown; n = 3 independent experiments; P values are from 

unpaired, two-tailed t-test.

d, Total DNA extracts from H6c7, AsPC1, and COLO357 pancreatic cells were subjected to 

bisulfite modification and sequencing of a FBXL7 promoter region within the CpG island. 

The table shows the percentage of methylation of the FBXL7 promoter.

e, Total mRNA extracts from the indicated prostate cells were analyzed for FBXL7 mRNA 

levels by qPCR. Mean ± s.d. is shown; n = 3 independent experiments; P values are from 

unpaired, two-tailed t-test.

f, Total DNA extracts from PNT1A, LAPC4, PC-3, PC-3M, and PC-3M-LN4 prostate cells 

were subjected to bisulfite modification and sequencing of a FBXL7 promoter region within 

the CpG island. The table shows the percentage of methylation of the FBXL7 promoter.

g, Co-expression of FBXL7 and AR mRNAs was analyzed in the prostate TCGA dataset 

(cBioPortal; n = 450). Two-tailed non-parametric Spearman correlation was used. The linear 

regression line is shown in red.

h, Total mRNA extracts from AsPC1, PC-3, PC-3M and PC-3M-LN4 cells were analyzed 

for FBXL7 mRNA levels by qPCR upon addition of decitabine for the indicated times. Mean 

± s.d. is shown; n = 3 independent experiments; P values are from unpaired, two-tailed t-test.

i, PL45, AsPC1, PNT1A, LNCaP, and PC-3 cells were transfected with two different 

siRNAs to FBXL7 (each individually) or a non-targeting (NT) siRNA. Twenty-four hours 

after transfection, cells were harvested and plated in 96-well plates in triplicates. Cell 

proliferation was assessed at the indicated times by measuring absorbance (OD) at 590–650 

nm. A representative experiment out of two, each performed in triplicate, is shown. Mean ± 

s.d. is shown.
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Extended Data Fig. 2: FBXL7 mediates the degradation of active c-SRC
a, HEK-293T cells were transfected with the indicated FLAG-tagged F-box proteins (FBPs) 

or an empty vector (EV). Twenty-four hours after transfection, cells were harvested and 

lysed. Whole-cell extracts (WCE) were subjected to immunoprecipitation (IP) with an anti-

FLAG resin and immunoblotting.

b, PNT1A cells were treated with MG132 during the last 3 h before lysis. Lysates were 

immunoprecipitated with either an antibody against c-SRC, an antibody to FBXL7, or 

nonspecific IgG, and immunoblotted.

c, HEK-293T cells were transfected with FLAG-tagged wild-type FBXL7, FLAG-tagged 

FBXL7(ΔF), or an empty vector (EV). Twenty-four hours after transfection, whole-cell 
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extracts (WCE) were subjected to immunoprecipitation (IP) with an anti-FLAG resin and 

immunoblotting.

d, HEK-293T cells were transfected with FLAG-tagged wild-type c-SRC, FLAG-tagged c-

SRC(Y530F), FLAG-tagged c-SRC(Y419F), or an empty vector (EV). Twenty-four hours 

after transfection, whole-cell extracts (WCE) were subjected to immunoprecipitation (IP) 

with an anti-FLAG resin and immunoblotting.

e, DU145 cells were transfected with a pool of four siRNAs to FBXL7 or a non-targeting 

(NT) siRNA oligo for 48 h, and treated with cycloheximide (CHX) for the indicated times. 

Protein extracts were then immunoblotted as indicated.

a-e, two independent experiments were performed with similar results.

Extended Data Fig. 3: FBXL7 binds c-SRC phosphorylated on Ser104
a, Schematic representation of c-SRC mutants. Binding of c-SRC to FBXL7 is indicated 

with the symbol (+).

b-d, HEK-293T cells were transfected with FLAG-tagged versions of either wild-type c-

SRC or the indicated c-SRC mutants, or with an empty vector (EV). Twenty-four hours after 
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transfection, whole-cell extracts (WCE) were subjected to immunoprecipitation (IP) with an 

anti-FLAG resin and immunoblotting.

b-d, two independent experiments were performed with similar results.

e, Lysates from HEK-293T cells were used in binding reactions with beads coupled to either 

a peptide or a phospho-peptide flanking the residue S104 in the c-SRC sequence (sequences 

shown on top of the panel). Bound proteins from three independent experiments were 

subjected to immunoblotting.

f, Alignment of the region corresponding to amino acids 98–119 of human c-SRC in c-SRC 

orthologs.

g, HEK-293T cells were transfected with FLAG-tagged FBXL7. Twenty-four hours after, 

whole-cell extracts were treated with λ-phosphatase for 4 h, then subjected to 

immunoprecipitation (IP) with an anti-FLAG resin and immunoblotting.

h, Experiment was performed as in b-d.

i, Surface structure of human c-SRC obtained from PDB [www.rcsb.org;50]. The amino acid 

S104 is highlighted in red. Its position shows that it is a solvent-exposed surface amino acid.

j, HEK-293T cells were transfected with either one of two FLAG-tagged F-box proteins 

(FBPs), namely FBXL7 or FBXL1, or with an empty vector (EV). Twenty-four hours after 

transfection, whole-cell extracts (WCE) were subjected to immunoprecipitation (IP) with an 

anti-FLAG resin and immunoblotting.

g, j: Two independent experiments were performed with similar results.
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Extended Data Fig. 4: FBXL7 silencing promotes cell migration
a, MCF-7 cells were transfected with two different siRNAs to FBXL7 or a non-targeting 

(NT) siRNA oligo (left panels). PL45 cells were transfected with an siRNA oligo to FBXL7 

or NT siRNA (right panels). Twenty-four hours after transfection, whole-cell extracts were 

immunoblotted as indicated.

b, PNT1A cells were transfected with an siRNA oligo to FBXL7 (FBXL7 si#1) or a non-

targeting (NT) siRNA. Twenty-four hours after transfection, whole-cell extracts (WCE) were 

denatured and subjected to immunoprecipitation (IP) with anti-ETS1 antibody followed by 
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immunoblotting. ETS1 phosphorylated on Tyr was detected with an anti-phospho-Tyr 

antibody (PY20).

a, b: Two independent experiments were performed with similar results.

c-d, PNT1A cells were transfected with an siRNA oligo to FBXL7 (FBXL7 si#1) or a non-

targeting (NT) siRNA. Twenty-four hours after, cells were treated with either vehicle alone 

or two c-SRC kinase inhibitors [SU6656 or dasatinib] for an additional twenty-four hours, 

and either re-plated (c) or seeded on collagen type I-coated transwells (d). In c, after 18 

hours, a wound-healing assay was performed up to 48 h in presence or absence of SU6656 

or dasatinib. The graph shows a representative experiment out of two, each performed in 

triplicate. Mean ± s.d. is shown; 24 h, *** P = 0.00093 (NT vs. FBXL7 siRNA), 48 h, *** P 

= 0.00032 (NT vs. FBXL7 siRNA). P values are from unpaired, two-tailed t-test. In d, after 

5 h, cells that migrated on the bottom of the transwells were counted in 10 different fields/

well. The graph shows a representative experiment out of two performed for each condition. 

Mean ± s.d. is shown. n = 10. P values are from unpaired, two-tailed t-test.

e, PNT1A cells were transfected with an siRNA oligo to FBXL7 (FBXL7 si#1) or a non-

targeting (NT) siRNA. Twenty-four hours after, cells were re-plated in 6-weel plates in a soft 

agar layer. After three weeks, the colonies were stained with nitro-blue-tetrazolium and 

photographed. PC-3 cancer cells were used as positive control.

f, PNT1A cells treated as in c-d, were analyzed by immunoblotting.

g, PC-3 prostate carcinoma cells were transfected with FLAG-tagged FBXL7 or an empty 

vector (EV). Twenty-four hours after transfection, cells were plated on 96-well plate in 

triplicates, allowed to adhere and, after 18 hours, assayed for cell motility through a wound-

healing assay. The graph shows quantification from two independent experiments. e-g, n = 3 

independent experiments. In g, mean ± s.d. is shown. P values are from unpaired, two-tailed 

t-test.

Extended Data Fig. 5: FBXL7 protein expression inversely correlates with c-SRC protein 
expression in pancreatic and prostate cancer
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a, Representative immunohistochemistry staining images of normal (N) and tumor human 

pancreatic specimens at different disease stage. Levels of FBXL7 and c-SRC protein in 

consecutive tissue slides are shown. n = 5 (N) and n = 66 (tumor) independent specimens. 

Scale bar: 100 μm.

b, Representative immunohistochemistry staining images of normal (N) and tumor prostate 

human specimens at different disease stage. Levels of FBXL7 and c-SRC protein in 

consecutive tissue slides are shown. n = 10 (N) and n = 84 (tumor) independent specimens. 

Scale bar: 100 μm.

Extended Data Fig. 6: Decrease in FBXL7 mRNA expression in prostate cancer is not associated 
with changes in c-SRC mRNA levels
a-d, Oncomine analysis of FBXL7 and c-SRC mRNA levels in four independent collections 

of normal and tumor prostate human specimens. N, normal prostate; PCa, prostate 

carcinoma; PA, prostate adenocarcinoma. a, n = 28 (N), n = 94 (PCa); b, n = 29 (N), n = 155 

(PCa), n = 1 (PA); c, n = 13 (N), n = 44 (PCa); d, n = 8 (N), n = 32 (PCa) independent 

specimens. Median, 10th and 90th percentile are shown in the bar graph. P values are from 

unpaired, two-tailed t-test, as reported in Oncomine (www.oncomine.org).
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Extended Data Fig. 7: FBXL7 suppression promotes prostate cancer metastasis
a, NOD/SCID-gamma mice were inoculated in the ventral prostate with 5 × 105 PC-3 cells 

stably transfected with a non-targeting shRNA (NT), shRNAs to FBXL7, or both shRNAs to 

FBXL7 and c-SRC. Orthotopically transplanted mice were treated with doxycycline to 

induce shRNA expression (n = 5, NT shRNA; n = 7, FBXL7 shRNA; n = 10, FBXL7/c-SRC 

shRNA mice). Panels show representative H&E and immunohistochemical staining 

(antibodies to Ki67 and CD31) of primary tumors. Scale bar: 100 μm. The right panel shows 

quantification of Ki67 positive cells. Mean ± s.d. is shown. n = 4. P values are from 

unpaired, two-tailed t-test.

b, Representative anti-ZEB1 immunohistochemical staining of primary tumors from the 

experiment shown in a. n = 3. Scale bar: 10 μm.

c, Representative immunohistochemical staining of spleen and coagulating gland (CG) 

sections from FBXL7 shRNA mice with an antibody specific for human mitochondria. 

Bottom panel, number of mice with specific micrometastases in different organs/tissues. 

Scale bar: 100 μm.
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Extended Data Fig. 8: Fbxl7 suppression promotes pancreatic cancer metastasis
a, Schematic representation of the murine Fbxl7 genomic loci and gRNAs target locations.

b, Fbxl7 was knocked-out in FC1242 cells using CRISPR technology. 80% confluent 

FC1242 cells were lysed and whole-cell extracts were immunoblotted. KO clones E11 and 

G10 are shown. Two independent experiments were performed with similar results.

c, Top panels, FC1242 cells (parental and Fbxl7 KO, clone E11) were plated on transwells in 

the presence of 10% FBS in the outer chamber as chemoattractant. After 6 h, cells that 

migrated to the bottom of the transwells were counted in 10 different fields/well. Scale bar: 

10 μm. The graph shows quantification from a representative experiment out of three 

independent experiments. n = 10. Middle graph, FC1242 cells (parental and Fbxl7 KO, 

clones E11 and G10) were harvested and plated in 96-well plates in triplicates. Cell 

proliferation was assessed by measuring absorbance (OD) at 590–650 nm at the indicated 

times. A representative experiment of two performed is shown. Bottom graph, FC1242 cells 

(parental and Fbxl7 KO, clone E11) were plated in a soft agar layer. After 3 weeks, colonies 

were stained and counted. The graph shows quantification from three independent 

experiments. Mean ± s.d. is shown. P values are from unpaired, two-tailed t-test.

Moro et al. Page 20

Nat Cell Biol. Author manuscript; available in PMC 2021 February 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



d, FC1242 mouse pancreatic adenocarcinoma cells were transfected with an siRNA oligo to 

Fbxl7 or a non-targeting siRNA oligo (NT). Twenty-four or forty-eight hours after 

transfection, whole-cell extracts were immunoblotted. Two independent experiments were 

performed.

e, f, 80,000 Fbxl7 KO FC1242 cells were injected in the pancreas of 8-weeks old C57BL/6 

mice. Eighteen days after injection, primary tumors, kidney, peritoneum, liver, epididymis 

and bladder were collected. Sections of primary tumors were stained with anti-ZEB1 and 

anti-ZEB2 antibodies (e). Sections of peritoneum, liver and kidney were subjected to H&E 

staining (f). N, normal tissue; T, tumor tissue. The table on the bottom shows the number of 

mice exhibiting macrometastases in specific tissues/total number of mice. Scale bars: 20 μm 

(e), 100 μm (f).

g, AsPC1 cells stably expressing non-targeting (NT) shRNA or FBXL7 shRNA were 

analyzed by immunoblotting (Left panel; two independent experiments performed) or plated 

in soft agar layer and, three weeks after, colonies were counted. The graph in the right panel 

shows quantification from three independent experiments Mean ± s.d. is shown. P values are 

from unpaired, two-tailed t-test.

h, 500,000 AsPC1 cells stably expressing NT or FBXL7 shRNA were injected in the tail of 

the pancreas of 8-weeks old B6.129S7-Rag1tm1Mom/J(002216) mice. Five weeks after 

injection, primary tumors were collected and sections analyzed by immunohistochemistry 

with an antibody to ZEB1 or ZEB2. n = 4. Scale bar: 20 μm.

Extended Data Table 1.

Clinical characteristics of prostate cancer specimens analyzed for FBXL7 promoter 

methylation.

Patient No. Age (y) PSA (ng/ml) Gleason Grade TNM Stage Disease Stage FBXL7 Promoter 
Methylation (a.u.)

1 27 NR - - - 0

2 35 NR - - - 1

3 20 NR - - - 0

4 18 NR - - - 1

5 59 5.4 4 (2+2) T2N0M0 II 2

6 66 6 8 (3+5) T2N0M0 II 1

7 66 7.7 7 (3+4) T2N0M0 II 2

8 56 2.28 7 (3+4) T2N0MX II 1

9 70 18 7 (3+4) T2N0M0 II 0

10 62 5.1 7 (3+4) T2cNXMX II 0

11 60 15 7 (3+4) T2cNXMX II 1

12 59 5.1 7 (3+4) T2cNXMX II 1

13 69 5.3 7 (3+4) T2N0M0 II 1

14 65 8.38 7 (3+4) T2N0M0 II 1

15 86 6.1 7 (3+4) T2N0M0 II 1

16 60 15 7 (3+4) T2cNXMX II 1
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Patient No. Age (y) PSA (ng/ml) Gleason Grade TNM Stage Disease Stage FBXL7 Promoter 
Methylation (a.u.)

17 69 5.3 7 (3+4) T3N0M0 III 1

18 64 6.1 7 (4+3) T3N0M0 III 4

19 65 8.38 7 (4+3) T3N0M0 III 4

20 53 5.1 6 (3+3) T3bN0MX III 4

21 58 9.7 7 (4+3) T3aNXMX III 3

22 63 5.42 9 (5+4) T3N0M0 III 3

23 64 13 9 (5+4) T3N0MX III 4

24 62 6.15 9 (4+5) T3NXMX III 3

25 76 7.8 9 (4+5) T3aN0MX III 1

26 53 8.8 9 (4+5) T3bN0MX III 1

27 66 55 9 (5+4) T3N1M1 IV 4

28 59 33.9 6 (3+3) T2N0M0 II 1

29 55 7.8 6 (3+3) T2N0M0 II 0

30 63 4.36 6 (3+3) T2N0M0 II 0

31 56 4.2 6 (3+3) T2N0M0 II 1

32 58 2.9 6 (3+3) T2N0M0 II 0

33 65 0.05 7 (3+4) T2N0M0 II 0

34 66 17 7 (4+3) T3N0M0 III 3

35 58 5.2 7 (4+3) T3N0M0 III 3

36 59 4.7 7 (3+4) T2N0M0 II 1

37 58 2.67 7 (3+4) T2N0M0 II 1

38 64 6.15 7 (4+3) T3N0M0 III 2

39 69 6.46 7 (3+4) T2N0M0 II 0

40 65 7 7 (4+3) T3N0M0 III 2

41 74 5.3 8 (4+4) T3bN0MX III 4

42 61 18 9 (5+4) T3N1M1 IV 5

43 60 45.3 9 (5+4) T3N1M1 IV 5

44 63 8.5 9 (5+4) T3N0MX III 4

45 76 7.8 9 (5+4) T3bN0MX III 4

46 53 11 9 (5+4) T3bN0MX III 4

Specimens n. 1–4: benign prostate; NR, not recorded; a.u., arbitrary units: 2, 3, 4, 5 indicate at least 2-, 3-, 4- and 5-fold 
increase in promoter methylation levels compared to benign prostate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. FBXL7 promoter is hypermethylated in aggressive human cancers
a, Heatmap showing promoter methylation profiles, ranked by their average methylation 

scores calculated across individual tumor types. Genes encoding F-box proteins are in black; 

genes whose promoters have been reported to be often methylated in human cancers are 

either in red or in blue. The latter are those also reported in Extended Data Fig. 1a.

b-c, Human immortalized normal cells from retinal pigment epithelium (hTERT-RPE-1), 

breast epithelium (MCF10A), prostate epithelium (PNT1A), pancreatic ductal epithelium 

(H6c7), invasive human breast (MDA-MB-231, MDA-MB-436), prostate (PC-3), pancreatic 
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(PL45), lung (H1299, A549) cancer cells, human immortalized embryonic kidney cells 

(HEK-293T), and the U2OS human osteoblastoma cells were subjected to immunoblotting 

(b) or analyzed for methylation of the FBXL7 promoter (c). M, molecular weight markers.

d-e, Immortalized normal pancreatic ductal cells (H6c7), and the pancreatic cancer cell lines 

PL45, Capan-II, Capan-I, BxPC-3, Mia-Paca-II, AsPC1, PANC1, YAPC, and COLO357 

were subjected to immunoblotting (d) or analyzed for methylation of the FBXL7 promoter 

(e). In e, the low-metastatic prostate cancer cells DU145 were included for comparison.

f-g, Human normal diploid (PrEC1) and immortalized (PNT1A, RWPE) prostate epithelial 

cells, hormone-naïve low-metastatic (LAPC4, LNCaP), castration-resistant low-metastatic 

(C4–2, DU145, PC-3) prostate cancer cells, and the highly metastatic derivatives of PC-3 

cells (PC-3M and PC-3M-LN4) were subjected to immunoblotting (f) or analyzed for 

methylation of the FBXL7 promoter (g).

h, AsPC1 pancreatic cancer cells were incubated with decitabine for the indicated times and 

subjected to immunoblotting.

i, PC-3, PC-3M and PC-3M-LN4 cells were treated with decitabine for the indicated times 

and subjected to immunoblotting.

In e and g, the arrow points to methylated FBXL7 promoter, whereas the asterisk indicates 

the primers’ signal. b-i, three independent experiments were performed, with similar results.
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Fig. 2. Low FBXL7 mRNA levels predict poor survival in pancreatic and prostate cancer patients
a-c, Normal (N) and tumor prostate specimens were analyzed for methylation of the FBXL7 
gene promoter (a), FBXL7 mRNA levels (b), and levels of the indicated proteins (c). The 

arrow points to the methylated FBXL7 promoter, whereas the asterisk indicates the primers’ 

signal. Details on patients are reported in Extended Data Table 1. n = 12 biologically 

independent samples. a, c: Two independent experiments were performed, with similar 

results. b, Mean ± s.d. is shown; n = 3 independent experiments; P values are from unpaired, 

two-tailed t-test.
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d, Correlation analysis of FBXL7 promoter methylation with Gleason grade, pT stage and 

disease stage for the specimens reported in Extended Data Table 1. n = 41. Two-tailed non-

parametric Spearman correlation wad used. The linear regression line is shown.

e, Kaplan-Meier plot showing reduced survival probability of prostate cancer patients with 

low FBXL7 mRNA levels (n = 204) compared with high (n = 285) FBXL7 mRNA levels 

(TCGA set), and pancreatic cancer patients with low FBXL7 mRNA levels (n = 30) 

compared to high (n = 30) FBXL7 mRNA levels (https://www.proteinatlas.org/

ENSG0000183580-FBXL7). Log rank (Mantel-Cox) statistical test was used.

f, PL45 and PC-3 cells were transfected with the indicated siRNAs and, after 24 h, re-plated 

on Matrigel-coated transwells. After 48 h, cells that invaded through Matrigel and migrated 

on the bottom of the transwells were stained and counted in 10 different fields/well. Each 

experiment was performed in triplicate. The graph shows quantification from a 

representative experiment.

g, The indicated cells stably transfected with a pool of shRNAs to FBXL7 or a non-targeting 

(NT) shRNAs were plated on Matrigel-coated transwells in the presence or absence of 

decitabine. Each experiment was performed in triplicate. After 48–72 h, cells that invaded 

through Matrigel were counted as in 2f. The graph shows quantification from a 

representative experiment. In f, g: two independent experiments were performed with similar 

results. Mean ± s.d. is shown; n = 10; P values are from unpaired, two-tailed t-test.
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Fig. 3. FBXL7 controls the degradation of active c-SRC upon its phosphorylation on Ser104
a, LAPC4 cells were treated with MG132 for 3 h before lysis. Lysates were 

immunoprecipitated with an antibody against c-SRC, FBXL7, or nonspecific IgG, and 

immunoblotted.

b, HEK-293T cells transfected for 24 h with FLAG-tagged FBXL7 or empty vector (EV), 

were treated for 3 h with MG132 or solvent before lysis, and immunoblotted.
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c, LAPC4 cells were transfected with the indicated constructs and, after 18 h, incubated with 

MG132 for 2 h before lysis. Whole-cell extracts (WCE) were subjected to 

immunoprecipitation (IP) with anti-GFP resin and immunoblotting.

d, PNT1A cells were transfected for 48 h with siRNAs to FBXL7 or c-CBL, or a non-

targeting (NT) siRNA, treated with cycloheximide (CHX) for the indicated times, and 

immunoblotted.

e, HEK-293T cells were co-transfected with FLAG-tagged FBXL7 and GFP-tagged wild-

type or mutant c-SRC constructs. After 24 h, cells were treated for 3 h with MG132 before 

lysis. WCE were subjected to IP with anti-FLAG resin and immunoblotting.

a-e: The experiments were repeated three times with similar results.

f, HEK-293T cells transfected for 24 h with the indicated constructs were treated with CHX 

for the indicated times and immunoblotted. Quantification of three different experiments is 

shown. 2 h, 4 h, 7 h: **P=0.000931, *P=0.015, *P=0.0018 [c-SRC vs. c-SRC(S104A)]; 

**P=0.000262, *P=0.0052, **P=0.00077 [c-SRC vs. c-SRC(S104F)].

g-h, PNT1A cells were transfected with GFP-tagged wild-type c-SRC, c-SRC(S104A), c-

SRC(S104F), or EV. After 24 h, cells were assayed for migration (g) or lysed for 

immunoblotting (h). Each experiment was performed in triplicate. The graph shows 

quantification of a representative experiment (n = 10). Two (g) and three (h) independent 

experiments were performed with similar results. *P=2.37E-07; **P=6.6E-08; 

***P=1.09E-06.

i-k, PC-3 cells were transfected with an siRNA targeting c-SRC’s 3’UTR and, after 24h, 

transfected with GFP-tagged wild-type c-SRC, c-SRC(S104A), c-SRC(S104F) or EV. After 

24 h, cells were re-plated on Matrigel-coated inserts (i), 96-well plate (j) or in a soft-agar 

layer (k). i-j, quantification from a representative experiment out of two (i, n=10; 

*P=5.34E-17; **P=2.67E-07; ***P=1.11E-08). k, n=4 independent experiments.

Mean ± s.d. is shown. P values are from unpaired, two-tailed t-test.
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Fig. 4. FBXL7 downregulation promotes expression of EMT markers and cell invasion in a c-
SRC-dependent manner
a, PNT1A cells were transfected with two different siRNAs to FBXL7 (individually) or a 

NT siRNA. At the indicated times after transfection, cells were subjected to 

immunoblotting. Three independent experiments were performed with similar results.

b, LAPC4 cells were transfected with an siRNA to FBXL7 (FBXL7si oligo #1) or a NT 

siRNA. At the indicated times after transfection, cells were subjected to immunoblotting 

(left panel) or plated in a 96-well plate, on a soft-agar layer, on a transwell in the presence of 
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Collagen type I in the lower chamber as chemoattractant, or on Matrigel-coated transwells 

(top to bottom panels: cell proliferation, colony formation, migration, and invasion assay, 

respectively). A representative proliferation experiment performed in triplicate, out of two 

independent experiments, is shown. Colony formation assay: n = 3 independent experiments. 

After 6 h (migration) or 48 h (invasion), cells were fixed, stained, photographed, and 

counted in 10 different fields/well. A representative migration and invasion experiment out 

of two independent experiments/each is shown (n = 10). Mean ± s.d. is shown; P values are 

from unpaired, two-tailed t-test.

c, PC-3 cells were stably transduced with the indicated doxycycline-inducible shRNAs. 

Twenty-four hours after doxycycline induction, cells were subjected to immunoblotting (left 

panel) or re-plated on Matrigel-coated transwells (upper and middle right panels). After 48 

h, cells that invaded through Matrigel were counted in 10 different fields/well. In the bottom, 

right panel, cells were assayed for anchorage-independent growth three weeks after being 

plated in soft agar (n = 3 independent experiments; mean ± s.d. is shown). A representative 

invasion experiment out of two independent experiments is shown. Scale bar: 40 μm. Mean ± 

s.d. is shown; n = 10; P values are from unpaired, two-tailed t-test.

d, PC-3 cells were transfected with FLAG-tagged FBXL7 or EV. Twenty-four hours after 

transfection, cells were subjected to immunoblotting (top panel; two representative 

experiments were performed with similar results) or re-plated on Matrigel-coated transwells 

(bottom panels). After 72 h, cells invaded through Matrigel and migrated on the bottom of 

the transwells were counted in 10 different fields/well. The graph shows quantification from 

a representative experiment out of two. Scale bar: 40 μm. Mean ± s.d. is shown; n = 10; P 

values are from unpaired, two-tailed t-test.
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Fig. 5. Downregulation of FBXL7 expression inversely correlates with c-SRC upregulation in 
pancreatic and high-stage prostate cancers
a, Protein extracts from normal diploid pancreatic duct epithelial cells (H6c7) and the 

indicated pancreatic cancer cells were analyzed by immunoblotting.

b, The indicated cells were subjected to immunoblotting.

c-d The indicated cells were treated with decitabine for the indicated times and analyzed by 

immunoblotting.

e, PC-3 cells were transfected with FLAG-tagged wild-type c-SRC or c-SRC(S104A). 

Twenty-four hours after, cells were treated with decitabine for the indicated times and 

immunoblotted.

a-e, Two independent experiments were performed with similar results.

f, Tumor microarrays (TMAs) containing normal and tumor pancreatic human specimens 

were immunostained with antibodies to FBXL7 and c-SRC. The graphs show the percentage 

of normal, Stage I and Stage II-IV tumor pancreatic tissues with no, moderate or strong 

FBXL7 expression that have no, moderate or strong c-SRC expression. n = 71 biologically 

independent samples. Linear regression was determined using X2 test.

g, TMAs containing normal and tumor human prostate specimens were immunostained with 

antibodies to FBXL7 and c-SRC. The graphs show the percentage of normal, Stage II, and 

Stage III/IV prostate cancer tissues with no, moderate, or strong FBXL7 expression that 

have no, moderate, or strong c-SRC expression. n = 94 biologically independent samples. 

Linear regression was determined using Γ2 test.
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Fig. 6. FBXL7 and c-SRC cancer mutations are inactivating and stabilizing, respectively
a, HEK-293T cells were transfected with FLAG-tagged wild-type FBXL7 or FLAG-tagged 

FBXL7 cancer mutants, together with GFP-tagged c-SRC. Twenty-four hours after 

transfection, whole-cell extracts (WCE) were subjected to immunoprecipitation (IP) with an 

anti-FLAG resin and immunoblotting.

b, DU145 cells were transfected with FLAG-tagged versions of either wild-type FBXL7, 

FBXL7 cancer mutants (T458M, P65S, P93L, Y145*, Q271H, R353Q, R480H, R480C), or 

GFP. Twenty-four hours after transfection, cells were treated with cycloheximide (CHX) for 

the indicated times, and whole-cell extracts were subjected to immunoblotting.

a-b, Two independent experiments were performed with similar results.

c, HEK-293T cells were transfected with FLAG-tagged versions of wild-type c-SRC or the 

indicated c-SRC mutants. Twenty-four hours after transfection, whole-cell extracts (WCE) 

were subjected to immunoprecipitation (IP) with an anti-FLAG resin and immunoblotting.

d, HEK-293T cells were transfected with GFP-tagged versions of either wild-type c-SRC or 

the indicated c-SRC mutants, together with FLAG-tagged FBXL7. Twenty-four hours after 

transfection, whole-cell extracts (WCE) were subjected to immunoprecipitation (IP) with an 

anti-FLAG resin and immunoblotting.
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e, HEK-293T cells were transfected with FLAG-tagged versions of wild-type c-SRC or c-

SRC(N116D). Twenty-four hours after transfection, cells were treated with cycloheximide 

(CHX) for the indicated times and whole-cell extracts were immunoblotted.

c-e, Three independent experiments were performed with similar results.

f, HEK-293T cells were co-transfected with FLAG-tagged versions of either wild-type c-

SRC or the indicated c-SRC mutants. Twenty-four hours after transfection, whole-cell 

extracts (WCE) were subjected to immunoprecipitation (IP) with anti-FLAG resin and 

immunoblotting. Two independent experiments were performed with similar results.
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Fig. 7. FBXL7 suppression promotes prostate cancer metastasis, which is counteracted by co-
silencing c-SRC or decitabine treatment
a, NOD/SCID-gamma mice were inoculated in the ventral prostate with 5 × 105 PC-3 cells 

stably expressing both luciferase and the indicated doxycycline-inducible shRNAs. NT = 

non-targeting shRNA. Orthotopically transplanted mice were then treated with doxycycline 

to induce shRNA expression (NT shRNA: n = 5; FBXL7 shRNA: n = 7; FBXL7/c-SRC 

shRNA: n = 10). Top left panels, representative bioluminescent images taken at the end of 

the experiment. Two independent experiments were performed. Bottom left panels, 

representative excised prostates with tumors imaged 60 days post-injection. Scale bar: 1 cm. 

Right panel, quantification of prostate weights. Mean ± s.d. is shown. P values are from 

unpaired, two-tailed t-test.

b, Representative immunohistochemical staining of ZEB2 in primary tumor sections from 

mice shown in (a). n = 3. Scale bars: 100 μM (top), 10 μM (bottom). T = tumor.

c-d, NOD/SCID-gamma mice were inoculated in the ventral prostate with 5 × 105 PC-3M 

cells stably expressing luciferase, GFP, and the indicated shRNAs. Orthotopic transplanted 

mice were treated with decitabine (Decit.) or vehicle once a week by intraperitoneal 

injection at 1 μg/g body weight up to 40 days post-implantation. Two independent 

experiments were performed with similar results. In c, top panels, representative mice 
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imaged with BLI at the end of the experiment; middle panels, representative excised 

prostates with tumors imaged 40 days post-injection (scale bar: 1 cm); bottom left panels, 

quantification of tumor weight (n = 5 mice per group). Mean ± s.d. is shown. P values are 

from unpaired, two-tailed t-test. Bottom right panels, representative immunohistochemical 

staining of ZEB1, ZEB2 and E-CADHERIN in primary tumors (scale bar: 10 μm). In d, 

lungs were excised, imaged with BLI and subjected to FACS analysis for GFP-positive cells 

(bottom panels). Control: lung from non-transplanted mouse. Scale bar: 5 mm. The graph on 

the right shows the percentage of GFP+ cells/lung (n = 4 mice per group). Mean ± s.d. is 

shown. P values are from unpaired, two-tailed t-test.
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Fig. 8. Fbxl7/FBXL7 suppression promotes pancreatic cancer metastasis, which is counteracted 
by decitabine or dasatinib treatment
a, 1×106 FC1242 cells (parental or Fbxl7 KO) were injected in the spleen of 8-weeks old 

C57BL/6 mice. Sixteen days after injection, livers were collected, weighed, and 

photographed. n = 11 mice/group. Scale bar: 1 cm.

b-c, 80,000 FC1242 cells (parental or Fbxl7 KO) were injected in the pancreas of 8-weeks 

old C57BL/6 mice. Where indicated, two days after injection, dasatinib was administered by 

daily oral gavage (200 μl, 20 mg/kg). Eighteen days after injection, primary tumors (b), 

kidney, peritoneum, liver, epidydimis, and bladder were collected. In b, scale bar: 1 cm. n = 

6, Parental-Untreated; n = 8, Parental-Dasatinib; n = 7, KO-Untreated; n = 6, KO-Dasatinib. 

In c, representative pictures of peritoneum, liver, and kidney with macrometastasis (arrows) 

are shown. Two independent experiments were performed. The table shows the number of 

mice with macrometastases/total number of mice. n = 17, Parental; n = 8, Parental + 

dasatinib; n = 18, KO; n = 6, KO+Dasatinib.

d, 500,000 AsPC1 cells stably expressing GFP-tagged NT or FBXL7 shRNAs were injected 

in the pancreas of 8-weeks old B6.129S7-Rag1tm1Mom/J(002216) mice. Five weeks after 

injection, primary tumors (top panels) and livers (bottom panels) were collected. Two 

independent experiments were performed. Scale bar: 1 cm. Top right panel, quantification of 
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tumor weight (n = 15 mice/group). Bottom panels, livers were subjected to FACS analysis 

for GFP-positive cells (NT siRNA: n = 5 mice; FBXL7 siRNA: n = 4 mice).

e, 1×106 AsPC1 cells stably expressing GFP-tagged FBXL7 or NT shRNA were injected in 

the spleen of 8-weeks old B6.129S7-Rag1tm1Mom/J(002216) mice. Twenty-four hours 

before cell injection, decitabine was administered by intraperitoneal injection at 1 μg/g body 

weight. Six days after cell injection, livers were collected and subjected to FACS analysis for 

GFP-positive cells (NT siRNA: n = 5 mice; NT siRNA+ Decit.: n = 4 mice; FBXL7 siRNA: 

n = 5 mice; FBXL7 siRNA+Decit.: n = 6 mice). Two independent experiments were 

performed. Control: liver from normal, non-injected mouse. Decit.=decitabine. Mean ± s.d. 

is shown. P values are from unpaired, two-tailed t-test.
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